Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{2\left(x+3\right)}-\frac{4x+6}{\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Factor 2x+6. Factor x^{2}-9.
\frac{\left(x-1\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}-\frac{2\left(4x+6\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+3\right) and \left(x-3\right)\left(x+3\right) is 2\left(x-3\right)\left(x+3\right). Multiply \frac{x-1}{2\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{4x+6}{\left(x-3\right)\left(x+3\right)} times \frac{2}{2}.
\frac{\left(x-1\right)\left(x-3\right)-2\left(4x+6\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Since \frac{\left(x-1\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)} and \frac{2\left(4x+6\right)}{2\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-3x-x+3-8x-12}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Do the multiplications in \left(x-1\right)\left(x-3\right)-2\left(4x+6\right).
\frac{x^{2}-12x-9}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Combine like terms in x^{2}-3x-x+3-8x-12.
\frac{x^{2}-12x-9}{2\left(x-3\right)\left(x+3\right)}+\frac{3\times 2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-3\right)\left(x+3\right) and x-3 is 2\left(x-3\right)\left(x+3\right). Multiply \frac{3}{x-3} times \frac{2\left(x+3\right)}{2\left(x+3\right)}.
\frac{x^{2}-12x-9+3\times 2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}
Since \frac{x^{2}-12x-9}{2\left(x-3\right)\left(x+3\right)} and \frac{3\times 2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-12x-9+6x+18}{2\left(x-3\right)\left(x+3\right)}
Do the multiplications in x^{2}-12x-9+3\times 2\left(x+3\right).
\frac{x^{2}-6x+9}{2\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}-12x-9+6x+18.
\frac{\left(x-3\right)^{2}}{2\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}-6x+9}{2\left(x-3\right)\left(x+3\right)}.
\frac{x-3}{2\left(x+3\right)}
Cancel out x-3 in both numerator and denominator.
\frac{x-3}{2x+6}
Expand 2\left(x+3\right).
\frac{x-1}{2\left(x+3\right)}-\frac{4x+6}{\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Factor 2x+6. Factor x^{2}-9.
\frac{\left(x-1\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}-\frac{2\left(4x+6\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+3\right) and \left(x-3\right)\left(x+3\right) is 2\left(x-3\right)\left(x+3\right). Multiply \frac{x-1}{2\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{4x+6}{\left(x-3\right)\left(x+3\right)} times \frac{2}{2}.
\frac{\left(x-1\right)\left(x-3\right)-2\left(4x+6\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Since \frac{\left(x-1\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)} and \frac{2\left(4x+6\right)}{2\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-3x-x+3-8x-12}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Do the multiplications in \left(x-1\right)\left(x-3\right)-2\left(4x+6\right).
\frac{x^{2}-12x-9}{2\left(x-3\right)\left(x+3\right)}+\frac{3}{x-3}
Combine like terms in x^{2}-3x-x+3-8x-12.
\frac{x^{2}-12x-9}{2\left(x-3\right)\left(x+3\right)}+\frac{3\times 2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-3\right)\left(x+3\right) and x-3 is 2\left(x-3\right)\left(x+3\right). Multiply \frac{3}{x-3} times \frac{2\left(x+3\right)}{2\left(x+3\right)}.
\frac{x^{2}-12x-9+3\times 2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}
Since \frac{x^{2}-12x-9}{2\left(x-3\right)\left(x+3\right)} and \frac{3\times 2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-12x-9+6x+18}{2\left(x-3\right)\left(x+3\right)}
Do the multiplications in x^{2}-12x-9+3\times 2\left(x+3\right).
\frac{x^{2}-6x+9}{2\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}-12x-9+6x+18.
\frac{\left(x-3\right)^{2}}{2\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}-6x+9}{2\left(x-3\right)\left(x+3\right)}.
\frac{x-3}{2\left(x+3\right)}
Cancel out x-3 in both numerator and denominator.
\frac{x-3}{2x+6}
Expand 2\left(x+3\right).