Solve for x
x=\frac{11-y}{8}
Solve for y
y=11-8x
Graph
Share
Copied to clipboard
\frac{x-1}{1}=\frac{y-3}{-5-3}
Subtract 1 from 2 to get 1.
x-1=\frac{y-3}{-5-3}
Anything divided by one gives itself.
x-1=\frac{y-3}{-8}
Subtract 3 from -5 to get -8.
x-1=\frac{-y+3}{8}
Multiply both numerator and denominator by -1.
x-1=-\frac{1}{8}y+\frac{3}{8}
Divide each term of -y+3 by 8 to get -\frac{1}{8}y+\frac{3}{8}.
x=-\frac{1}{8}y+\frac{3}{8}+1
Add 1 to both sides.
x=-\frac{1}{8}y+\frac{11}{8}
Add \frac{3}{8} and 1 to get \frac{11}{8}.
\frac{x-1}{1}=\frac{y-3}{-5-3}
Subtract 1 from 2 to get 1.
x-1=\frac{y-3}{-5-3}
Anything divided by one gives itself.
x-1=\frac{y-3}{-8}
Subtract 3 from -5 to get -8.
x-1=\frac{-y+3}{8}
Multiply both numerator and denominator by -1.
x-1=-\frac{1}{8}y+\frac{3}{8}
Divide each term of -y+3 by 8 to get -\frac{1}{8}y+\frac{3}{8}.
-\frac{1}{8}y+\frac{3}{8}=x-1
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{8}y=x-1-\frac{3}{8}
Subtract \frac{3}{8} from both sides.
-\frac{1}{8}y=x-\frac{11}{8}
Subtract \frac{3}{8} from -1 to get -\frac{11}{8}.
\frac{-\frac{1}{8}y}{-\frac{1}{8}}=\frac{x-\frac{11}{8}}{-\frac{1}{8}}
Multiply both sides by -8.
y=\frac{x-\frac{11}{8}}{-\frac{1}{8}}
Dividing by -\frac{1}{8} undoes the multiplication by -\frac{1}{8}.
y=11-8x
Divide x-\frac{11}{8} by -\frac{1}{8} by multiplying x-\frac{11}{8} by the reciprocal of -\frac{1}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}