Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-0}{\frac{1}{2}}=\frac{y-0}{-3-0}
Subtract 0 from \frac{1}{2} to get \frac{1}{2}.
\frac{x-0}{\frac{1}{2}}=\frac{y-0}{-3}
Subtract 0 from -3 to get -3.
\frac{x}{\frac{1}{2}}-\frac{0}{\frac{1}{2}}=\frac{y-0}{-3}
Divide each term of x-0 by \frac{1}{2} to get \frac{x}{\frac{1}{2}}-\frac{0}{\frac{1}{2}}.
\frac{x}{\frac{1}{2}}+0=\frac{y-0}{-3}
Zero divided by any non-zero number gives zero.
\frac{x}{\frac{1}{2}}=\frac{y-0}{-3}
Anything plus zero gives itself.
\frac{x}{\frac{1}{2}}=-\frac{1}{3}y-0
Divide each term of y-0 by -3 to get -\frac{1}{3}y-0.
\frac{x}{\frac{1}{2}}=-\frac{1}{3}y
Reorder the terms.
2x=-\frac{y}{3}
The equation is in standard form.
\frac{2x}{2}=-\frac{\frac{y}{3}}{2}
Divide both sides by 2.
x=-\frac{\frac{y}{3}}{2}
Dividing by 2 undoes the multiplication by 2.
x=-\frac{y}{6}
Divide -\frac{y}{3} by 2.
\frac{x-0}{\frac{1}{2}}=\frac{y-0}{-3-0}
Subtract 0 from \frac{1}{2} to get \frac{1}{2}.
\frac{x-0}{\frac{1}{2}}=\frac{y-0}{-3}
Subtract 0 from -3 to get -3.
\frac{x}{\frac{1}{2}}-\frac{0}{\frac{1}{2}}=\frac{y-0}{-3}
Divide each term of x-0 by \frac{1}{2} to get \frac{x}{\frac{1}{2}}-\frac{0}{\frac{1}{2}}.
\frac{x}{\frac{1}{2}}+0=\frac{y-0}{-3}
Zero divided by any non-zero number gives zero.
\frac{x}{\frac{1}{2}}=\frac{y-0}{-3}
Anything plus zero gives itself.
\frac{x}{\frac{1}{2}}=-\frac{1}{3}y-0
Divide each term of y-0 by -3 to get -\frac{1}{3}y-0.
-\frac{1}{3}y-0=\frac{x}{\frac{1}{2}}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}y=\frac{x}{\frac{1}{2}}+0
Add 0 to both sides.
-\frac{1}{3}y=\frac{x}{\frac{1}{2}}
Anything plus zero gives itself.
-\frac{1}{3}y=2x
The equation is in standard form.
\frac{-\frac{1}{3}y}{-\frac{1}{3}}=\frac{2x}{-\frac{1}{3}}
Multiply both sides by -3.
y=\frac{2x}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
y=-6x
Divide 2x by -\frac{1}{3} by multiplying 2x by the reciprocal of -\frac{1}{3}.