Evaluate
-\frac{\left(x-1\right)\left(x^{2}+1\right)}{2x^{2}+1}
Expand
\frac{1-x+x^{2}-x^{3}}{2x^{2}+1}
Graph
Share
Copied to clipboard
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}}{\frac{xx}{x}-\frac{1}{x}}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}}{\frac{xx-1}{x}}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}}{\frac{x^{2}-1}{x}}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Do the multiplications in xx-1.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}x}{x^{2}-1}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Divide x^{2} by \frac{x^{2}-1}{x} by multiplying x^{2} by the reciprocal of \frac{x^{2}-1}{x}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{3}}{x^{2}-1}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Factor x^{2}-1.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{x\left(x-1\right)\left(x+1\right)-x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Since \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{x^{3}+x^{2}-x^{2}-x-x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Do the multiplications in x\left(x-1\right)\left(x+1\right)-x^{3}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{-x}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Combine like terms in x^{3}+x^{2}-x^{2}-x-x^{3}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}\left(x-1\right)\left(x+1\right)}{-x}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Divide x^{2} by \frac{-x}{\left(x-1\right)\left(x+1\right)} by multiplying x^{2} by the reciprocal of \frac{-x}{\left(x-1\right)\left(x+1\right)}.
\frac{x-\frac{x}{x^{3}+\frac{x\left(x-1\right)\left(x+1\right)}{-1}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Cancel out x in both numerator and denominator.
\frac{x-\frac{x}{x^{3}-x\left(x-1\right)\left(x+1\right)}}{1-\frac{x}{x+\frac{1}{x}}-2}
Anything divided by -1 gives its opposite.
\frac{x-\frac{x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Factor x^{3}-x\left(x-1\right)\left(x+1\right).
\frac{\frac{xx}{x}-\frac{x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Since \frac{xx}{x} and \frac{x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Do the multiplications in xx-x.
\frac{\frac{x\left(x-1\right)}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x}.
\frac{x-1}{1-\frac{x}{x+\frac{1}{x}}-2}
Cancel out x in both numerator and denominator.
\frac{x-1}{1-\frac{x}{\frac{xx}{x}+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x-1}{1-\frac{x}{\frac{xx+1}{x}}-2}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x-1}{1-\frac{x}{\frac{x^{2}+1}{x}}-2}
Do the multiplications in xx+1.
\frac{x-1}{1-\frac{xx}{x^{2}+1}-2}
Divide x by \frac{x^{2}+1}{x} by multiplying x by the reciprocal of \frac{x^{2}+1}{x}.
\frac{x-1}{1-\frac{x^{2}}{x^{2}+1}-2}
Multiply x and x to get x^{2}.
\frac{x-1}{-1-\frac{x^{2}}{x^{2}+1}}
Subtract 2 from 1 to get -1.
\frac{x-1}{-\frac{x^{2}+1}{x^{2}+1}-\frac{x^{2}}{x^{2}+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -1 times \frac{x^{2}+1}{x^{2}+1}.
\frac{x-1}{\frac{-\left(x^{2}+1\right)-x^{2}}{x^{2}+1}}
Since -\frac{x^{2}+1}{x^{2}+1} and \frac{x^{2}}{x^{2}+1} have the same denominator, subtract them by subtracting their numerators.
\frac{x-1}{\frac{-x^{2}-1-x^{2}}{x^{2}+1}}
Do the multiplications in -\left(x^{2}+1\right)-x^{2}.
\frac{x-1}{\frac{-2x^{2}-1}{x^{2}+1}}
Combine like terms in -x^{2}-1-x^{2}.
\frac{\left(x-1\right)\left(x^{2}+1\right)}{-2x^{2}-1}
Divide x-1 by \frac{-2x^{2}-1}{x^{2}+1} by multiplying x-1 by the reciprocal of \frac{-2x^{2}-1}{x^{2}+1}.
\frac{x^{3}+x-x^{2}-1}{-2x^{2}-1}
Use the distributive property to multiply x-1 by x^{2}+1.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}}{\frac{xx}{x}-\frac{1}{x}}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}}{\frac{xx-1}{x}}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}}{\frac{x^{2}-1}{x}}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Do the multiplications in xx-1.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{2}x}{x^{2}-1}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Divide x^{2} by \frac{x^{2}-1}{x} by multiplying x^{2} by the reciprocal of \frac{x^{2}-1}{x}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{3}}{x^{2}-1}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{x-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Factor x^{2}-1.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{x\left(x-1\right)\left(x+1\right)-x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Since \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{x^{3}+x^{2}-x^{2}-x-x^{3}}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Do the multiplications in x\left(x-1\right)\left(x+1\right)-x^{3}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}}{\frac{-x}{\left(x-1\right)\left(x+1\right)}}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Combine like terms in x^{3}+x^{2}-x^{2}-x-x^{3}.
\frac{x-\frac{x}{x^{3}+\frac{x^{2}\left(x-1\right)\left(x+1\right)}{-x}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Divide x^{2} by \frac{-x}{\left(x-1\right)\left(x+1\right)} by multiplying x^{2} by the reciprocal of \frac{-x}{\left(x-1\right)\left(x+1\right)}.
\frac{x-\frac{x}{x^{3}+\frac{x\left(x-1\right)\left(x+1\right)}{-1}}}{1-\frac{x}{x+\frac{1}{x}}-2}
Cancel out x in both numerator and denominator.
\frac{x-\frac{x}{x^{3}-x\left(x-1\right)\left(x+1\right)}}{1-\frac{x}{x+\frac{1}{x}}-2}
Anything divided by -1 gives its opposite.
\frac{x-\frac{x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Factor x^{3}-x\left(x-1\right)\left(x+1\right).
\frac{\frac{xx}{x}-\frac{x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Since \frac{xx}{x} and \frac{x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Do the multiplications in xx-x.
\frac{\frac{x\left(x-1\right)}{x}}{1-\frac{x}{x+\frac{1}{x}}-2}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x}.
\frac{x-1}{1-\frac{x}{x+\frac{1}{x}}-2}
Cancel out x in both numerator and denominator.
\frac{x-1}{1-\frac{x}{\frac{xx}{x}+\frac{1}{x}}-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x-1}{1-\frac{x}{\frac{xx+1}{x}}-2}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{x-1}{1-\frac{x}{\frac{x^{2}+1}{x}}-2}
Do the multiplications in xx+1.
\frac{x-1}{1-\frac{xx}{x^{2}+1}-2}
Divide x by \frac{x^{2}+1}{x} by multiplying x by the reciprocal of \frac{x^{2}+1}{x}.
\frac{x-1}{1-\frac{x^{2}}{x^{2}+1}-2}
Multiply x and x to get x^{2}.
\frac{x-1}{-1-\frac{x^{2}}{x^{2}+1}}
Subtract 2 from 1 to get -1.
\frac{x-1}{-\frac{x^{2}+1}{x^{2}+1}-\frac{x^{2}}{x^{2}+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -1 times \frac{x^{2}+1}{x^{2}+1}.
\frac{x-1}{\frac{-\left(x^{2}+1\right)-x^{2}}{x^{2}+1}}
Since -\frac{x^{2}+1}{x^{2}+1} and \frac{x^{2}}{x^{2}+1} have the same denominator, subtract them by subtracting their numerators.
\frac{x-1}{\frac{-x^{2}-1-x^{2}}{x^{2}+1}}
Do the multiplications in -\left(x^{2}+1\right)-x^{2}.
\frac{x-1}{\frac{-2x^{2}-1}{x^{2}+1}}
Combine like terms in -x^{2}-1-x^{2}.
\frac{\left(x-1\right)\left(x^{2}+1\right)}{-2x^{2}-1}
Divide x-1 by \frac{-2x^{2}-1}{x^{2}+1} by multiplying x-1 by the reciprocal of \frac{-2x^{2}-1}{x^{2}+1}.
\frac{x^{3}+x-x^{2}-1}{-2x^{2}-1}
Use the distributive property to multiply x-1 by x^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}