Solve for x
x = \frac{43 \sqrt{2} - 7}{2} \approx 26.905591591
Graph
Share
Copied to clipboard
\frac{x-\frac{95}{2}+\frac{34}{2}}{\frac{8-9\sqrt{2}+17}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Convert 17 to fraction \frac{34}{2}.
\frac{x+\frac{-95+34}{2}}{\frac{8-9\sqrt{2}+17}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Since -\frac{95}{2} and \frac{34}{2} have the same denominator, add them by adding their numerators.
\frac{x-\frac{61}{2}}{\frac{8-9\sqrt{2}+17}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Add -95 and 34 to get -61.
\frac{x-\frac{61}{2}}{\frac{25-9\sqrt{2}}{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Add 8 and 17 to get 25.
\frac{\left(x-\frac{61}{2}\right)\times 2}{25-9\sqrt{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Divide x-\frac{61}{2} by \frac{25-9\sqrt{2}}{2} by multiplying x-\frac{61}{2} by the reciprocal of \frac{25-9\sqrt{2}}{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{\left(25-9\sqrt{2}\right)\left(25+9\sqrt{2}\right)}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Rationalize the denominator of \frac{\left(x-\frac{61}{2}\right)\times 2}{25-9\sqrt{2}} by multiplying numerator and denominator by 25+9\sqrt{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{25^{2}-\left(-9\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Consider \left(25-9\sqrt{2}\right)\left(25+9\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-\left(-9\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Calculate 25 to the power of 2 and get 625.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-\left(-9\right)^{2}\left(\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Expand \left(-9\sqrt{2}\right)^{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-81\left(\sqrt{2}\right)^{2}}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Calculate -9 to the power of 2 and get 81.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-81\times 2}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{625-162}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Multiply 81 and 2 to get 162.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{4-\sqrt{2}}{-3-\sqrt{2}}
Subtract 162 from 625 to get 463.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{\left(-3-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}
Rationalize the denominator of \frac{4-\sqrt{2}}{-3-\sqrt{2}} by multiplying numerator and denominator by -3+\sqrt{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{\left(-3\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(-3-\sqrt{2}\right)\left(-3+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{9-2}
Square -3. Square \sqrt{2}.
\frac{\left(x-\frac{61}{2}\right)\times 2\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Subtract 2 from 9 to get 7.
\frac{\left(2x-\frac{61}{2}\times 2\right)\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Use the distributive property to multiply x-\frac{61}{2} by 2.
\frac{\left(2x-61\right)\left(25+9\sqrt{2}\right)}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Cancel out 2 and 2.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{\left(4-\sqrt{2}\right)\left(-3+\sqrt{2}\right)}{7}
Apply the distributive property by multiplying each term of 2x-61 by each term of 25+9\sqrt{2}.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-12+4\sqrt{2}+3\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Apply the distributive property by multiplying each term of 4-\sqrt{2} by each term of -3+\sqrt{2}.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-12+7\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Combine 4\sqrt{2} and 3\sqrt{2} to get 7\sqrt{2}.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-12+7\sqrt{2}-2}{7}
The square of \sqrt{2} is 2.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=\frac{-14+7\sqrt{2}}{7}
Subtract 2 from -12 to get -14.
\frac{50x+18\sqrt{2}x-1525-549\sqrt{2}}{463}=-2+\sqrt{2}
Divide each term of -14+7\sqrt{2} by 7 to get -2+\sqrt{2}.
50x+18\sqrt{2}x-1525-549\sqrt{2}=-926+463\sqrt{2}
Multiply both sides of the equation by 463.
50x+18\sqrt{2}x-549\sqrt{2}=-926+463\sqrt{2}+1525
Add 1525 to both sides.
50x+18\sqrt{2}x-549\sqrt{2}=599+463\sqrt{2}
Add -926 and 1525 to get 599.
50x+18\sqrt{2}x=599+463\sqrt{2}+549\sqrt{2}
Add 549\sqrt{2} to both sides.
50x+18\sqrt{2}x=599+1012\sqrt{2}
Combine 463\sqrt{2} and 549\sqrt{2} to get 1012\sqrt{2}.
\left(50+18\sqrt{2}\right)x=599+1012\sqrt{2}
Combine all terms containing x.
\left(18\sqrt{2}+50\right)x=1012\sqrt{2}+599
The equation is in standard form.
\frac{\left(18\sqrt{2}+50\right)x}{18\sqrt{2}+50}=\frac{1012\sqrt{2}+599}{18\sqrt{2}+50}
Divide both sides by 50+18\sqrt{2}.
x=\frac{1012\sqrt{2}+599}{18\sqrt{2}+50}
Dividing by 50+18\sqrt{2} undoes the multiplication by 50+18\sqrt{2}.
x=\frac{43\sqrt{2}-7}{2}
Divide 599+1012\sqrt{2} by 50+18\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}