Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x\left(x-1\right)}{x-1}-\frac{2x}{x-1}}{x-\frac{x}{-x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1}{x-1}.
\frac{\frac{x\left(x-1\right)-2x}{x-1}}{x-\frac{x}{-x-1}}
Since \frac{x\left(x-1\right)}{x-1} and \frac{2x}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x-2x}{x-1}}{x-\frac{x}{-x-1}}
Do the multiplications in x\left(x-1\right)-2x.
\frac{\frac{x^{2}-3x}{x-1}}{x-\frac{x}{-x-1}}
Combine like terms in x^{2}-x-2x.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{x\left(-x-1\right)}{-x-1}-\frac{x}{-x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{-x-1}{-x-1}.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{x\left(-x-1\right)-x}{-x-1}}
Since \frac{x\left(-x-1\right)}{-x-1} and \frac{x}{-x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{-x^{2}-x-x}{-x-1}}
Do the multiplications in x\left(-x-1\right)-x.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{-x^{2}-2x}{-x-1}}
Combine like terms in -x^{2}-x-x.
\frac{\left(x^{2}-3x\right)\left(-x-1\right)}{\left(x-1\right)\left(-x^{2}-2x\right)}
Divide \frac{x^{2}-3x}{x-1} by \frac{-x^{2}-2x}{-x-1} by multiplying \frac{x^{2}-3x}{x-1} by the reciprocal of \frac{-x^{2}-2x}{-x-1}.
\frac{x\left(x-3\right)\left(-x-1\right)}{x\left(x-1\right)\left(-x-2\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-2\right)}
Cancel out x in both numerator and denominator.
\frac{-x^{2}+2x+3}{-x^{2}-x+2}
Expand the expression.
\frac{\frac{x\left(x-1\right)}{x-1}-\frac{2x}{x-1}}{x-\frac{x}{-x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1}{x-1}.
\frac{\frac{x\left(x-1\right)-2x}{x-1}}{x-\frac{x}{-x-1}}
Since \frac{x\left(x-1\right)}{x-1} and \frac{2x}{x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x-2x}{x-1}}{x-\frac{x}{-x-1}}
Do the multiplications in x\left(x-1\right)-2x.
\frac{\frac{x^{2}-3x}{x-1}}{x-\frac{x}{-x-1}}
Combine like terms in x^{2}-x-2x.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{x\left(-x-1\right)}{-x-1}-\frac{x}{-x-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{-x-1}{-x-1}.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{x\left(-x-1\right)-x}{-x-1}}
Since \frac{x\left(-x-1\right)}{-x-1} and \frac{x}{-x-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{-x^{2}-x-x}{-x-1}}
Do the multiplications in x\left(-x-1\right)-x.
\frac{\frac{x^{2}-3x}{x-1}}{\frac{-x^{2}-2x}{-x-1}}
Combine like terms in -x^{2}-x-x.
\frac{\left(x^{2}-3x\right)\left(-x-1\right)}{\left(x-1\right)\left(-x^{2}-2x\right)}
Divide \frac{x^{2}-3x}{x-1} by \frac{-x^{2}-2x}{-x-1} by multiplying \frac{x^{2}-3x}{x-1} by the reciprocal of \frac{-x^{2}-2x}{-x-1}.
\frac{x\left(x-3\right)\left(-x-1\right)}{x\left(x-1\right)\left(-x-2\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(-x-1\right)}{\left(x-1\right)\left(-x-2\right)}
Cancel out x in both numerator and denominator.
\frac{-x^{2}+2x+3}{-x^{2}-x+2}
Expand the expression.