Solve for x
x = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
x=0
Graph
Share
Copied to clipboard
\frac{\frac{1}{3}\left(3x-2\right)}{\frac{1}{3}\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
Factor the expressions that are not already factored in \frac{x-\frac{2}{3}}{x+\frac{2}{3}}.
\frac{3x-2}{\left(\frac{1}{3}\right)^{0}\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{3x-2}{1\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
Calculate \frac{1}{3} to the power of 0 and get 1.
\frac{3x-2}{3x+2}=\frac{3x-12}{3x^{2}+20x+12}
Use the distributive property to multiply 1 by 3x+2.
\frac{3x-2}{3x+2}-\frac{3x-12}{3x^{2}+20x+12}=0
Subtract \frac{3x-12}{3x^{2}+20x+12} from both sides.
\frac{3x-2}{3x+2}-\frac{3x-12}{\left(x+6\right)\left(3x+2\right)}=0
Factor 3x^{2}+20x+12.
\frac{\left(3x-2\right)\left(x+6\right)}{\left(x+6\right)\left(3x+2\right)}-\frac{3x-12}{\left(x+6\right)\left(3x+2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+2 and \left(x+6\right)\left(3x+2\right) is \left(x+6\right)\left(3x+2\right). Multiply \frac{3x-2}{3x+2} times \frac{x+6}{x+6}.
\frac{\left(3x-2\right)\left(x+6\right)-\left(3x-12\right)}{\left(x+6\right)\left(3x+2\right)}=0
Since \frac{\left(3x-2\right)\left(x+6\right)}{\left(x+6\right)\left(3x+2\right)} and \frac{3x-12}{\left(x+6\right)\left(3x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+18x-2x-12-3x+12}{\left(x+6\right)\left(3x+2\right)}=0
Do the multiplications in \left(3x-2\right)\left(x+6\right)-\left(3x-12\right).
\frac{3x^{2}+13x}{\left(x+6\right)\left(3x+2\right)}=0
Combine like terms in 3x^{2}+18x-2x-12-3x+12.
3x^{2}+13x=0
Variable x cannot be equal to any of the values -6,-\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(x+6\right)\left(3x+2\right).
x\left(3x+13\right)=0
Factor out x.
x=0 x=-\frac{13}{3}
To find equation solutions, solve x=0 and 3x+13=0.
\frac{\frac{1}{3}\left(3x-2\right)}{\frac{1}{3}\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
Factor the expressions that are not already factored in \frac{x-\frac{2}{3}}{x+\frac{2}{3}}.
\frac{3x-2}{\left(\frac{1}{3}\right)^{0}\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{3x-2}{1\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
Calculate \frac{1}{3} to the power of 0 and get 1.
\frac{3x-2}{3x+2}=\frac{3x-12}{3x^{2}+20x+12}
Use the distributive property to multiply 1 by 3x+2.
\frac{3x-2}{3x+2}-\frac{3x-12}{3x^{2}+20x+12}=0
Subtract \frac{3x-12}{3x^{2}+20x+12} from both sides.
\frac{3x-2}{3x+2}-\frac{3x-12}{\left(x+6\right)\left(3x+2\right)}=0
Factor 3x^{2}+20x+12.
\frac{\left(3x-2\right)\left(x+6\right)}{\left(x+6\right)\left(3x+2\right)}-\frac{3x-12}{\left(x+6\right)\left(3x+2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+2 and \left(x+6\right)\left(3x+2\right) is \left(x+6\right)\left(3x+2\right). Multiply \frac{3x-2}{3x+2} times \frac{x+6}{x+6}.
\frac{\left(3x-2\right)\left(x+6\right)-\left(3x-12\right)}{\left(x+6\right)\left(3x+2\right)}=0
Since \frac{\left(3x-2\right)\left(x+6\right)}{\left(x+6\right)\left(3x+2\right)} and \frac{3x-12}{\left(x+6\right)\left(3x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+18x-2x-12-3x+12}{\left(x+6\right)\left(3x+2\right)}=0
Do the multiplications in \left(3x-2\right)\left(x+6\right)-\left(3x-12\right).
\frac{3x^{2}+13x}{\left(x+6\right)\left(3x+2\right)}=0
Combine like terms in 3x^{2}+18x-2x-12-3x+12.
3x^{2}+13x=0
Variable x cannot be equal to any of the values -6,-\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(x+6\right)\left(3x+2\right).
x=\frac{-13±\sqrt{13^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 13 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±13}{2\times 3}
Take the square root of 13^{2}.
x=\frac{-13±13}{6}
Multiply 2 times 3.
x=\frac{0}{6}
Now solve the equation x=\frac{-13±13}{6} when ± is plus. Add -13 to 13.
x=0
Divide 0 by 6.
x=-\frac{26}{6}
Now solve the equation x=\frac{-13±13}{6} when ± is minus. Subtract 13 from -13.
x=-\frac{13}{3}
Reduce the fraction \frac{-26}{6} to lowest terms by extracting and canceling out 2.
x=0 x=-\frac{13}{3}
The equation is now solved.
\frac{\frac{1}{3}\left(3x-2\right)}{\frac{1}{3}\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
Factor the expressions that are not already factored in \frac{x-\frac{2}{3}}{x+\frac{2}{3}}.
\frac{3x-2}{\left(\frac{1}{3}\right)^{0}\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{3x-2}{1\left(3x+2\right)}=\frac{3x-12}{3x^{2}+20x+12}
Calculate \frac{1}{3} to the power of 0 and get 1.
\frac{3x-2}{3x+2}=\frac{3x-12}{3x^{2}+20x+12}
Use the distributive property to multiply 1 by 3x+2.
\frac{3x-2}{3x+2}-\frac{3x-12}{3x^{2}+20x+12}=0
Subtract \frac{3x-12}{3x^{2}+20x+12} from both sides.
\frac{3x-2}{3x+2}-\frac{3x-12}{\left(x+6\right)\left(3x+2\right)}=0
Factor 3x^{2}+20x+12.
\frac{\left(3x-2\right)\left(x+6\right)}{\left(x+6\right)\left(3x+2\right)}-\frac{3x-12}{\left(x+6\right)\left(3x+2\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+2 and \left(x+6\right)\left(3x+2\right) is \left(x+6\right)\left(3x+2\right). Multiply \frac{3x-2}{3x+2} times \frac{x+6}{x+6}.
\frac{\left(3x-2\right)\left(x+6\right)-\left(3x-12\right)}{\left(x+6\right)\left(3x+2\right)}=0
Since \frac{\left(3x-2\right)\left(x+6\right)}{\left(x+6\right)\left(3x+2\right)} and \frac{3x-12}{\left(x+6\right)\left(3x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+18x-2x-12-3x+12}{\left(x+6\right)\left(3x+2\right)}=0
Do the multiplications in \left(3x-2\right)\left(x+6\right)-\left(3x-12\right).
\frac{3x^{2}+13x}{\left(x+6\right)\left(3x+2\right)}=0
Combine like terms in 3x^{2}+18x-2x-12-3x+12.
3x^{2}+13x=0
Variable x cannot be equal to any of the values -6,-\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(x+6\right)\left(3x+2\right).
\frac{3x^{2}+13x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}+\frac{13}{3}x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{13}{3}x=0
Divide 0 by 3.
x^{2}+\frac{13}{3}x+\left(\frac{13}{6}\right)^{2}=\left(\frac{13}{6}\right)^{2}
Divide \frac{13}{3}, the coefficient of the x term, by 2 to get \frac{13}{6}. Then add the square of \frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{3}x+\frac{169}{36}=\frac{169}{36}
Square \frac{13}{6} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{13}{6}\right)^{2}=\frac{169}{36}
Factor x^{2}+\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Take the square root of both sides of the equation.
x+\frac{13}{6}=\frac{13}{6} x+\frac{13}{6}=-\frac{13}{6}
Simplify.
x=0 x=-\frac{13}{3}
Subtract \frac{13}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}