Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
Divide \frac{x-\frac{1}{x}}{x+1} by \frac{x-x^{3}}{x^{2}+1} by multiplying \frac{x-\frac{1}{x}}{x+1} by the reciprocal of \frac{x-x^{3}}{x^{2}+1}.
\frac{\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-1}{x}\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-1}{x}\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
Do the multiplications in xx-1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+1\right)\left(x-x^{3}\right)}
Express \frac{x^{2}-1}{x}\left(x^{2}+1\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x\left(x+1\right)\left(x-x^{3}\right)}
Express \frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+1\right)\left(x-x^{3}\right)} as a single fraction.
\frac{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x+1\right)x^{2}}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x+1\right)x^{2}}
Extract the negative sign in 1+x. Extract the negative sign in -1-x.
\frac{-\left(-1\right)\left(x^{2}+1\right)}{\left(-x-1\right)x^{2}}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x^{2}+1}{-x^{3}-x^{2}}
Expand the expression.
\frac{\left(x-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
Divide \frac{x-\frac{1}{x}}{x+1} by \frac{x-x^{3}}{x^{2}+1} by multiplying \frac{x-\frac{1}{x}}{x+1} by the reciprocal of \frac{x-x^{3}}{x^{2}+1}.
\frac{\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-1}{x}\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-1}{x}\left(x^{2}+1\right)}{\left(x+1\right)\left(x-x^{3}\right)}
Do the multiplications in xx-1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+1\right)\left(x-x^{3}\right)}
Express \frac{x^{2}-1}{x}\left(x^{2}+1\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x\left(x+1\right)\left(x-x^{3}\right)}
Express \frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+1\right)\left(x-x^{3}\right)} as a single fraction.
\frac{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x+1\right)x^{2}}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(-x-1\right)\left(x+1\right)x^{2}}
Extract the negative sign in 1+x. Extract the negative sign in -1-x.
\frac{-\left(-1\right)\left(x^{2}+1\right)}{\left(-x-1\right)x^{2}}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x^{2}+1}{-x^{3}-x^{2}}
Expand the expression.