Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Divide \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by \frac{x-x^{3}}{x^{2}+1} by multiplying \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by the reciprocal of \frac{x-x^{3}}{x^{2}+1}.
\frac{\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Do the multiplications in xx-1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Express \frac{x^{2}-1}{x}\left(x^{2}+1\right) as a single fraction.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(\frac{xx}{x}+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{xx+1}{x}\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{x^{2}+1}{x}\left(x-x^{3}\right)}
Do the multiplications in xx+1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}}
Express \frac{x^{2}+1}{x}\left(x-x^{3}\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)x}{x\left(x^{2}+1\right)\left(x-x^{3}\right)}
Divide \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x} by multiplying \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by the reciprocal of \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}.
\frac{x^{2}-1}{-x^{3}+x}
Cancel out x\left(x^{2}+1\right) in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(-x-1\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-1\right)\left(-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in 1+x.
\frac{-1}{x}
Cancel out \left(x-1\right)\left(-x-1\right) in both numerator and denominator.
\frac{\left(x-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Divide \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by \frac{x-x^{3}}{x^{2}+1} by multiplying \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by the reciprocal of \frac{x-x^{3}}{x^{2}+1}.
\frac{\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Do the multiplications in xx-1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Express \frac{x^{2}-1}{x}\left(x^{2}+1\right) as a single fraction.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(\frac{xx}{x}+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{xx+1}{x}\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{x^{2}+1}{x}\left(x-x^{3}\right)}
Do the multiplications in xx+1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}}
Express \frac{x^{2}+1}{x}\left(x-x^{3}\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)x}{x\left(x^{2}+1\right)\left(x-x^{3}\right)}
Divide \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x} by multiplying \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by the reciprocal of \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}.
\frac{x^{2}-1}{-x^{3}+x}
Cancel out x\left(x^{2}+1\right) in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(-x-1\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-1\right)\left(-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in 1+x.
\frac{-1}{x}
Cancel out \left(x-1\right)\left(-x-1\right) in both numerator and denominator.