Evaluate
-\frac{1}{x}
Expand
-\frac{1}{x}
Graph
Share
Copied to clipboard
\frac{\left(x-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Divide \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by \frac{x-x^{3}}{x^{2}+1} by multiplying \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by the reciprocal of \frac{x-x^{3}}{x^{2}+1}.
\frac{\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Do the multiplications in xx-1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Express \frac{x^{2}-1}{x}\left(x^{2}+1\right) as a single fraction.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(\frac{xx}{x}+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{xx+1}{x}\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{x^{2}+1}{x}\left(x-x^{3}\right)}
Do the multiplications in xx+1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}}
Express \frac{x^{2}+1}{x}\left(x-x^{3}\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)x}{x\left(x^{2}+1\right)\left(x-x^{3}\right)}
Divide \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x} by multiplying \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by the reciprocal of \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}.
\frac{x^{2}-1}{-x^{3}+x}
Cancel out x\left(x^{2}+1\right) in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(-x-1\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-1\right)\left(-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in 1+x.
\frac{-1}{x}
Cancel out \left(x-1\right)\left(-x-1\right) in both numerator and denominator.
\frac{\left(x-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Divide \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by \frac{x-x^{3}}{x^{2}+1} by multiplying \frac{x-\frac{1}{x}}{x+\frac{1}{x}} by the reciprocal of \frac{x-x^{3}}{x^{2}+1}.
\frac{\left(\frac{xx}{x}-\frac{1}{x}\right)\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{xx-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-1}{x}\left(x^{2}+1\right)}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Do the multiplications in xx-1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(x+\frac{1}{x}\right)\left(x-x^{3}\right)}
Express \frac{x^{2}-1}{x}\left(x^{2}+1\right) as a single fraction.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\left(\frac{xx}{x}+\frac{1}{x}\right)\left(x-x^{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{xx+1}{x}\left(x-x^{3}\right)}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{x^{2}+1}{x}\left(x-x^{3}\right)}
Do the multiplications in xx+1.
\frac{\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x}}{\frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}}
Express \frac{x^{2}+1}{x}\left(x-x^{3}\right) as a single fraction.
\frac{\left(x^{2}-1\right)\left(x^{2}+1\right)x}{x\left(x^{2}+1\right)\left(x-x^{3}\right)}
Divide \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x} by multiplying \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x} by the reciprocal of \frac{\left(x^{2}+1\right)\left(x-x^{3}\right)}{x}.
\frac{x^{2}-1}{-x^{3}+x}
Cancel out x\left(x^{2}+1\right) in both numerator and denominator.
\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)\left(-x-1\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-1\right)\left(-x-1\right)}{x\left(x-1\right)\left(-x-1\right)}
Extract the negative sign in 1+x.
\frac{-1}{x}
Cancel out \left(x-1\right)\left(-x-1\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}