Solve for f
\left\{\begin{matrix}f=-\frac{\left(x-1\right)^{3}}{4\left(x+1\right)}\text{, }&|x|\neq 1\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x\left(x-1\right)^{4}=fx\times 4\left(x-1\right)\left(-x-1\right)
Multiply both sides of the equation by 4\left(x-1\right)\left(-x-1\right).
x\left(x-1\right)^{4}=\left(4fx^{2}-fx\times 4\right)\left(-x-1\right)
Use the distributive property to multiply fx\times 4 by x-1.
x\left(x-1\right)^{4}=\left(4fx^{2}-4fx\right)\left(-x-1\right)
Multiply -1 and 4 to get -4.
x\left(x-1\right)^{4}=-4x^{3}f+4xf
Use the distributive property to multiply 4fx^{2}-4fx by -x-1 and combine like terms.
-4x^{3}f+4xf=x\left(x-1\right)^{4}
Swap sides so that all variable terms are on the left hand side.
\left(-4x^{3}+4x\right)f=x\left(x-1\right)^{4}
Combine all terms containing f.
\left(4x-4x^{3}\right)f=x\left(x-1\right)^{4}
The equation is in standard form.
\frac{\left(4x-4x^{3}\right)f}{4x-4x^{3}}=\frac{x\left(x-1\right)^{4}}{4x-4x^{3}}
Divide both sides by -4x^{3}+4x.
f=\frac{x\left(x-1\right)^{4}}{4x-4x^{3}}
Dividing by -4x^{3}+4x undoes the multiplication by -4x^{3}+4x.
f=-\frac{\left(x-1\right)^{3}}{4\left(x+1\right)}
Divide x\left(x-1\right)^{4} by -4x^{3}+4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}