Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x+7\right)=34\times 2
Multiply both sides by 2.
x^{2}+7x=34\times 2
Use the distributive property to multiply x by x+7.
x^{2}+7x=68
Multiply 34 and 2 to get 68.
x^{2}+7x-68=0
Subtract 68 from both sides.
x=\frac{-7±\sqrt{7^{2}-4\left(-68\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and -68 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-68\right)}}{2}
Square 7.
x=\frac{-7±\sqrt{49+272}}{2}
Multiply -4 times -68.
x=\frac{-7±\sqrt{321}}{2}
Add 49 to 272.
x=\frac{\sqrt{321}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{321}}{2} when ± is plus. Add -7 to \sqrt{321}.
x=\frac{-\sqrt{321}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{321}}{2} when ± is minus. Subtract \sqrt{321} from -7.
x=\frac{\sqrt{321}-7}{2} x=\frac{-\sqrt{321}-7}{2}
The equation is now solved.
x\left(x+7\right)=34\times 2
Multiply both sides by 2.
x^{2}+7x=34\times 2
Use the distributive property to multiply x by x+7.
x^{2}+7x=68
Multiply 34 and 2 to get 68.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=68+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=68+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{321}{4}
Add 68 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{321}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{321}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{\sqrt{321}}{2} x+\frac{7}{2}=-\frac{\sqrt{321}}{2}
Simplify.
x=\frac{\sqrt{321}-7}{2} x=\frac{-\sqrt{321}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.