Solve for x
x = \frac{\sqrt{321} - 1}{10} \approx 1.691647287
x=\frac{-\sqrt{321}-1}{10}\approx -1.891647287
Graph
Share
Copied to clipboard
x\left(x+1\right)=4\left(x-2\right)\left(-x-2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(-x-2\right).
x^{2}+x=4\left(x-2\right)\left(-x-2\right)
Use the distributive property to multiply x by x+1.
x^{2}+x=\left(4x-8\right)\left(-x-2\right)
Use the distributive property to multiply 4 by x-2.
x^{2}+x=-4x^{2}+16
Use the distributive property to multiply 4x-8 by -x-2 and combine like terms.
x^{2}+x+4x^{2}=16
Add 4x^{2} to both sides.
5x^{2}+x=16
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+x-16=0
Subtract 16 from both sides.
x=\frac{-1±\sqrt{1^{2}-4\times 5\left(-16\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 1 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 5\left(-16\right)}}{2\times 5}
Square 1.
x=\frac{-1±\sqrt{1-20\left(-16\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-1±\sqrt{1+320}}{2\times 5}
Multiply -20 times -16.
x=\frac{-1±\sqrt{321}}{2\times 5}
Add 1 to 320.
x=\frac{-1±\sqrt{321}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{321}-1}{10}
Now solve the equation x=\frac{-1±\sqrt{321}}{10} when ± is plus. Add -1 to \sqrt{321}.
x=\frac{-\sqrt{321}-1}{10}
Now solve the equation x=\frac{-1±\sqrt{321}}{10} when ± is minus. Subtract \sqrt{321} from -1.
x=\frac{\sqrt{321}-1}{10} x=\frac{-\sqrt{321}-1}{10}
The equation is now solved.
x\left(x+1\right)=4\left(x-2\right)\left(-x-2\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(-x-2\right).
x^{2}+x=4\left(x-2\right)\left(-x-2\right)
Use the distributive property to multiply x by x+1.
x^{2}+x=\left(4x-8\right)\left(-x-2\right)
Use the distributive property to multiply 4 by x-2.
x^{2}+x=-4x^{2}+16
Use the distributive property to multiply 4x-8 by -x-2 and combine like terms.
x^{2}+x+4x^{2}=16
Add 4x^{2} to both sides.
5x^{2}+x=16
Combine x^{2} and 4x^{2} to get 5x^{2}.
\frac{5x^{2}+x}{5}=\frac{16}{5}
Divide both sides by 5.
x^{2}+\frac{1}{5}x=\frac{16}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\frac{16}{5}+\left(\frac{1}{10}\right)^{2}
Divide \frac{1}{5}, the coefficient of the x term, by 2 to get \frac{1}{10}. Then add the square of \frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{16}{5}+\frac{1}{100}
Square \frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{321}{100}
Add \frac{16}{5} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{10}\right)^{2}=\frac{321}{100}
Factor x^{2}+\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{321}{100}}
Take the square root of both sides of the equation.
x+\frac{1}{10}=\frac{\sqrt{321}}{10} x+\frac{1}{10}=-\frac{\sqrt{321}}{10}
Simplify.
x=\frac{\sqrt{321}-1}{10} x=\frac{-\sqrt{321}-1}{10}
Subtract \frac{1}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}