Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(2x+1\right)=10
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
2x^{2}+x=10
Use the distributive property to multiply x by 2x+1.
2x^{2}+x-10=0
Subtract 10 from both sides.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-10\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 1 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-10\right)}}{2\times 2}
Square 1.
x=\frac{-1±\sqrt{1-8\left(-10\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-1±\sqrt{1+80}}{2\times 2}
Multiply -8 times -10.
x=\frac{-1±\sqrt{81}}{2\times 2}
Add 1 to 80.
x=\frac{-1±9}{2\times 2}
Take the square root of 81.
x=\frac{-1±9}{4}
Multiply 2 times 2.
x=\frac{8}{4}
Now solve the equation x=\frac{-1±9}{4} when ± is plus. Add -1 to 9.
x=2
Divide 8 by 4.
x=-\frac{10}{4}
Now solve the equation x=\frac{-1±9}{4} when ± is minus. Subtract 9 from -1.
x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x=2 x=-\frac{5}{2}
The equation is now solved.
x=-\frac{5}{2}
Variable x cannot be equal to 2.
x\left(2x+1\right)=10
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
2x^{2}+x=10
Use the distributive property to multiply x by 2x+1.
\frac{2x^{2}+x}{2}=\frac{10}{2}
Divide both sides by 2.
x^{2}+\frac{1}{2}x=\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{1}{2}x=5
Divide 10 by 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=5+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=5+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{81}{16}
Add 5 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{9}{4} x+\frac{1}{4}=-\frac{9}{4}
Simplify.
x=2 x=-\frac{5}{2}
Subtract \frac{1}{4} from both sides of the equation.
x=-\frac{5}{2}
Variable x cannot be equal to 2.