\frac { x ( 1 + 8 \% ) + x ( 1 - 10 \% ) - 2 x } { 2 x } \times 100 \%
Evaluate
-\frac{1}{100}=-0.01
Factor
-\frac{1}{100} = -0.01
Graph
Share
Copied to clipboard
\frac{x\left(1+\frac{8}{100}\right)+x\left(1-\frac{10}{100}\right)-2x}{2x}\times 1
Divide 100 by 100 to get 1.
\frac{x\left(1+\frac{2}{25}\right)+x\left(1-\frac{10}{100}\right)-2x}{2x}\times 1
Reduce the fraction \frac{8}{100} to lowest terms by extracting and canceling out 4.
\frac{x\left(\frac{25}{25}+\frac{2}{25}\right)+x\left(1-\frac{10}{100}\right)-2x}{2x}\times 1
Convert 1 to fraction \frac{25}{25}.
\frac{x\times \frac{25+2}{25}+x\left(1-\frac{10}{100}\right)-2x}{2x}\times 1
Since \frac{25}{25} and \frac{2}{25} have the same denominator, add them by adding their numerators.
\frac{x\times \frac{27}{25}+x\left(1-\frac{10}{100}\right)-2x}{2x}\times 1
Add 25 and 2 to get 27.
\frac{x\times \frac{27}{25}+x\left(1-\frac{1}{10}\right)-2x}{2x}\times 1
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{x\times \frac{27}{25}+x\left(\frac{10}{10}-\frac{1}{10}\right)-2x}{2x}\times 1
Convert 1 to fraction \frac{10}{10}.
\frac{x\times \frac{27}{25}+x\times \frac{10-1}{10}-2x}{2x}\times 1
Since \frac{10}{10} and \frac{1}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{x\times \frac{27}{25}+x\times \frac{9}{10}-2x}{2x}\times 1
Subtract 1 from 10 to get 9.
\frac{\frac{99}{50}x-2x}{2x}\times 1
Combine x\times \frac{27}{25} and x\times \frac{9}{10} to get \frac{99}{50}x.
\frac{-\frac{1}{50}x}{2x}\times 1
Combine \frac{99}{50}x and -2x to get -\frac{1}{50}x.
\frac{-\frac{1}{50}}{2}\times 1
Cancel out x in both numerator and denominator.
\frac{-1}{50\times 2}\times 1
Express \frac{-\frac{1}{50}}{2} as a single fraction.
\frac{-1}{100}\times 1
Multiply 50 and 2 to get 100.
-\frac{1}{100}
Fraction \frac{-1}{100} can be rewritten as -\frac{1}{100} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}