Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\times \frac{3}{2}x=24\times 2
Multiply both sides by 2.
x^{2}\times \frac{3}{2}=24\times 2
Multiply x and x to get x^{2}.
x^{2}\times \frac{3}{2}=48
Multiply 24 and 2 to get 48.
x^{2}=48\times \frac{2}{3}
Multiply both sides by \frac{2}{3}, the reciprocal of \frac{3}{2}.
x^{2}=\frac{48\times 2}{3}
Express 48\times \frac{2}{3} as a single fraction.
x^{2}=\frac{96}{3}
Multiply 48 and 2 to get 96.
x^{2}=32
Divide 96 by 3 to get 32.
x=4\sqrt{2} x=-4\sqrt{2}
Take the square root of both sides of the equation.
x\times \frac{3}{2}x=24\times 2
Multiply both sides by 2.
x^{2}\times \frac{3}{2}=24\times 2
Multiply x and x to get x^{2}.
x^{2}\times \frac{3}{2}=48
Multiply 24 and 2 to get 48.
x^{2}\times \frac{3}{2}-48=0
Subtract 48 from both sides.
\frac{3}{2}x^{2}-48=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{2}\left(-48\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, 0 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{3}{2}\left(-48\right)}}{2\times \frac{3}{2}}
Square 0.
x=\frac{0±\sqrt{-6\left(-48\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
x=\frac{0±\sqrt{288}}{2\times \frac{3}{2}}
Multiply -6 times -48.
x=\frac{0±12\sqrt{2}}{2\times \frac{3}{2}}
Take the square root of 288.
x=\frac{0±12\sqrt{2}}{3}
Multiply 2 times \frac{3}{2}.
x=4\sqrt{2}
Now solve the equation x=\frac{0±12\sqrt{2}}{3} when ± is plus.
x=-4\sqrt{2}
Now solve the equation x=\frac{0±12\sqrt{2}}{3} when ± is minus.
x=4\sqrt{2} x=-4\sqrt{2}
The equation is now solved.