Solve for n
\left\{\begin{matrix}n=\frac{z\left(y-x\right)}{x}\text{, }&x\neq y\text{ and }z\neq 0\text{ and }x\neq 0\\n\neq 0\text{, }&x=0\text{ and }z=0\text{ and }y\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{yz}{z+n}\text{, }&y\neq 0\text{ and }n\neq 0\text{ and }z\neq -n\\x\neq 0\text{, }&y=0\text{ and }z=-n\text{ and }n\neq 0\end{matrix}\right.
Share
Copied to clipboard
nx=\left(-x+y\right)z
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n\left(-x+y\right), the least common multiple of y-x,n.
nx=-xz+yz
Use the distributive property to multiply -x+y by z.
xn=yz-xz
The equation is in standard form.
\frac{xn}{x}=\frac{z\left(y-x\right)}{x}
Divide both sides by x.
n=\frac{z\left(y-x\right)}{x}
Dividing by x undoes the multiplication by x.
n=\frac{z\left(y-x\right)}{x}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}