Evaluate
-\frac{2x}{3}+\frac{x}{y}-\frac{1}{3}
Expand
-\frac{2x}{3}+\frac{x}{y}-\frac{1}{3}
Share
Copied to clipboard
\frac{3x}{3y}-\frac{\left(2x+1\right)y}{3y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 3 is 3y. Multiply \frac{x}{y} times \frac{3}{3}. Multiply \frac{2x+1}{3} times \frac{y}{y}.
\frac{3x-\left(2x+1\right)y}{3y}
Since \frac{3x}{3y} and \frac{\left(2x+1\right)y}{3y} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-2xy-y}{3y}
Do the multiplications in 3x-\left(2x+1\right)y.
\frac{3x}{3y}-\frac{\left(2x+1\right)y}{3y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 3 is 3y. Multiply \frac{x}{y} times \frac{3}{3}. Multiply \frac{2x+1}{3} times \frac{y}{y}.
\frac{3x-\left(2x+1\right)y}{3y}
Since \frac{3x}{3y} and \frac{\left(2x+1\right)y}{3y} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-2xy-y}{3y}
Do the multiplications in 3x-\left(2x+1\right)y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}