Solve for x
x=5
x=0
Graph
Share
Copied to clipboard
\left(x+7\right)x+\left(x-7\right)\left(x+1\right)=\left(x+7\right)\left(x-1\right)
Variable x cannot be equal to any of the values -7,7 since division by zero is not defined. Multiply both sides of the equation by \left(x-7\right)\left(x+7\right), the least common multiple of x-7,x+7.
x^{2}+7x+\left(x-7\right)\left(x+1\right)=\left(x+7\right)\left(x-1\right)
Use the distributive property to multiply x+7 by x.
x^{2}+7x+x^{2}-6x-7=\left(x+7\right)\left(x-1\right)
Use the distributive property to multiply x-7 by x+1 and combine like terms.
2x^{2}+7x-6x-7=\left(x+7\right)\left(x-1\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+x-7=\left(x+7\right)\left(x-1\right)
Combine 7x and -6x to get x.
2x^{2}+x-7=x^{2}+6x-7
Use the distributive property to multiply x+7 by x-1 and combine like terms.
2x^{2}+x-7-x^{2}=6x-7
Subtract x^{2} from both sides.
x^{2}+x-7=6x-7
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+x-7-6x=-7
Subtract 6x from both sides.
x^{2}-5x-7=-7
Combine x and -6x to get -5x.
x^{2}-5x-7+7=0
Add 7 to both sides.
x^{2}-5x=0
Add -7 and 7 to get 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±5}{2}
Take the square root of \left(-5\right)^{2}.
x=\frac{5±5}{2}
The opposite of -5 is 5.
x=\frac{10}{2}
Now solve the equation x=\frac{5±5}{2} when ± is plus. Add 5 to 5.
x=5
Divide 10 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{5±5}{2} when ± is minus. Subtract 5 from 5.
x=0
Divide 0 by 2.
x=5 x=0
The equation is now solved.
\left(x+7\right)x+\left(x-7\right)\left(x+1\right)=\left(x+7\right)\left(x-1\right)
Variable x cannot be equal to any of the values -7,7 since division by zero is not defined. Multiply both sides of the equation by \left(x-7\right)\left(x+7\right), the least common multiple of x-7,x+7.
x^{2}+7x+\left(x-7\right)\left(x+1\right)=\left(x+7\right)\left(x-1\right)
Use the distributive property to multiply x+7 by x.
x^{2}+7x+x^{2}-6x-7=\left(x+7\right)\left(x-1\right)
Use the distributive property to multiply x-7 by x+1 and combine like terms.
2x^{2}+7x-6x-7=\left(x+7\right)\left(x-1\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+x-7=\left(x+7\right)\left(x-1\right)
Combine 7x and -6x to get x.
2x^{2}+x-7=x^{2}+6x-7
Use the distributive property to multiply x+7 by x-1 and combine like terms.
2x^{2}+x-7-x^{2}=6x-7
Subtract x^{2} from both sides.
x^{2}+x-7=6x-7
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+x-7-6x=-7
Subtract 6x from both sides.
x^{2}-5x-7=-7
Combine x and -6x to get -5x.
x^{2}-5x=-7+7
Add 7 to both sides.
x^{2}-5x=0
Add -7 and 7 to get 0.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Simplify.
x=5 x=0
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}