Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-3>0 x-3<0
Denominator x-3 cannot be zero since division by zero is not defined. There are two cases.
x>3
Consider the case when x-3 is positive. Move -3 to the right hand side.
x<4\left(x-3\right)
The initial inequality does not change the direction when multiplied by x-3 for x-3>0.
x<4x-12
Multiply out the right hand side.
x-4x<-12
Move the terms containing x to the left hand side and all other terms to the right hand side.
-3x<-12
Combine like terms.
x>4
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x>4
Consider condition x>3 specified above. The result remains the same.
x<3
Now consider the case when x-3 is negative. Move -3 to the right hand side.
x>4\left(x-3\right)
The initial inequality changes the direction when multiplied by x-3 for x-3<0.
x>4x-12
Multiply out the right hand side.
x-4x>-12
Move the terms containing x to the left hand side and all other terms to the right hand side.
-3x>-12
Combine like terms.
x<4
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x<3
Consider condition x<3 specified above.
x\in \left(-\infty,3\right)\cup \left(4,\infty\right)
The final solution is the union of the obtained solutions.