Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+3\right)x+\left(x-3\right)\times 2x=18
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x-3,x+3,\left(x+3\right)\left(x-3\right).
x^{2}+3x+\left(x-3\right)\times 2x=18
Use the distributive property to multiply x+3 by x.
x^{2}+3x+\left(2x-6\right)x=18
Use the distributive property to multiply x-3 by 2.
x^{2}+3x+2x^{2}-6x=18
Use the distributive property to multiply 2x-6 by x.
3x^{2}+3x-6x=18
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-3x=18
Combine 3x and -6x to get -3x.
3x^{2}-3x-18=0
Subtract 18 from both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-18\right)}}{2\times 3}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-18\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-3\right)±\sqrt{9+216}}{2\times 3}
Multiply -12 times -18.
x=\frac{-\left(-3\right)±\sqrt{225}}{2\times 3}
Add 9 to 216.
x=\frac{-\left(-3\right)±15}{2\times 3}
Take the square root of 225.
x=\frac{3±15}{2\times 3}
The opposite of -3 is 3.
x=\frac{3±15}{6}
Multiply 2 times 3.
x=\frac{18}{6}
Now solve the equation x=\frac{3±15}{6} when ± is plus. Add 3 to 15.
x=3
Divide 18 by 6.
x=-\frac{12}{6}
Now solve the equation x=\frac{3±15}{6} when ± is minus. Subtract 15 from 3.
x=-2
Divide -12 by 6.
x=3 x=-2
The equation is now solved.
x=-2
Variable x cannot be equal to 3.
\left(x+3\right)x+\left(x-3\right)\times 2x=18
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x-3,x+3,\left(x+3\right)\left(x-3\right).
x^{2}+3x+\left(x-3\right)\times 2x=18
Use the distributive property to multiply x+3 by x.
x^{2}+3x+\left(2x-6\right)x=18
Use the distributive property to multiply x-3 by 2.
x^{2}+3x+2x^{2}-6x=18
Use the distributive property to multiply 2x-6 by x.
3x^{2}+3x-6x=18
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-3x=18
Combine 3x and -6x to get -3x.
\frac{3x^{2}-3x}{3}=\frac{18}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{3}{3}\right)x=\frac{18}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-x=\frac{18}{3}
Divide -3 by 3.
x^{2}-x=6
Divide 18 by 3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Simplify.
x=3 x=-2
Add \frac{1}{2} to both sides of the equation.
x=-2
Variable x cannot be equal to 3.