Solve for x
x=3
x=1
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { x } { x - 2 } - 2 = \frac { 3 ( x - 2 ) } { x }
Share
Copied to clipboard
xx+x\left(x-2\right)\left(-2\right)=\left(x-2\right)\times 3\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
x^{2}+x\left(x-2\right)\left(-2\right)=\left(x-2\right)\times 3\left(x-2\right)
Multiply x and x to get x^{2}.
x^{2}+\left(x^{2}-2x\right)\left(-2\right)=\left(x-2\right)\times 3\left(x-2\right)
Use the distributive property to multiply x by x-2.
x^{2}-2x^{2}+4x=\left(x-2\right)\times 3\left(x-2\right)
Use the distributive property to multiply x^{2}-2x by -2.
-x^{2}+4x=\left(x-2\right)\times 3\left(x-2\right)
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+4x=\left(x-2\right)^{2}\times 3
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
-x^{2}+4x=\left(x^{2}-4x+4\right)\times 3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
-x^{2}+4x=3x^{2}-12x+12
Use the distributive property to multiply x^{2}-4x+4 by 3.
-x^{2}+4x-3x^{2}=-12x+12
Subtract 3x^{2} from both sides.
-4x^{2}+4x=-12x+12
Combine -x^{2} and -3x^{2} to get -4x^{2}.
-4x^{2}+4x+12x=12
Add 12x to both sides.
-4x^{2}+16x=12
Combine 4x and 12x to get 16x.
-4x^{2}+16x-12=0
Subtract 12 from both sides.
x=\frac{-16±\sqrt{16^{2}-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 16 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
Square 16.
x=\frac{-16±\sqrt{256+16\left(-12\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-16±\sqrt{256-192}}{2\left(-4\right)}
Multiply 16 times -12.
x=\frac{-16±\sqrt{64}}{2\left(-4\right)}
Add 256 to -192.
x=\frac{-16±8}{2\left(-4\right)}
Take the square root of 64.
x=\frac{-16±8}{-8}
Multiply 2 times -4.
x=-\frac{8}{-8}
Now solve the equation x=\frac{-16±8}{-8} when ± is plus. Add -16 to 8.
x=1
Divide -8 by -8.
x=-\frac{24}{-8}
Now solve the equation x=\frac{-16±8}{-8} when ± is minus. Subtract 8 from -16.
x=3
Divide -24 by -8.
x=1 x=3
The equation is now solved.
xx+x\left(x-2\right)\left(-2\right)=\left(x-2\right)\times 3\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
x^{2}+x\left(x-2\right)\left(-2\right)=\left(x-2\right)\times 3\left(x-2\right)
Multiply x and x to get x^{2}.
x^{2}+\left(x^{2}-2x\right)\left(-2\right)=\left(x-2\right)\times 3\left(x-2\right)
Use the distributive property to multiply x by x-2.
x^{2}-2x^{2}+4x=\left(x-2\right)\times 3\left(x-2\right)
Use the distributive property to multiply x^{2}-2x by -2.
-x^{2}+4x=\left(x-2\right)\times 3\left(x-2\right)
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+4x=\left(x-2\right)^{2}\times 3
Multiply x-2 and x-2 to get \left(x-2\right)^{2}.
-x^{2}+4x=\left(x^{2}-4x+4\right)\times 3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
-x^{2}+4x=3x^{2}-12x+12
Use the distributive property to multiply x^{2}-4x+4 by 3.
-x^{2}+4x-3x^{2}=-12x+12
Subtract 3x^{2} from both sides.
-4x^{2}+4x=-12x+12
Combine -x^{2} and -3x^{2} to get -4x^{2}.
-4x^{2}+4x+12x=12
Add 12x to both sides.
-4x^{2}+16x=12
Combine 4x and 12x to get 16x.
\frac{-4x^{2}+16x}{-4}=\frac{12}{-4}
Divide both sides by -4.
x^{2}+\frac{16}{-4}x=\frac{12}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-4x=\frac{12}{-4}
Divide 16 by -4.
x^{2}-4x=-3
Divide 12 by -4.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}