Evaluate
\frac{1}{x}
Differentiate w.r.t. x
-\frac{1}{x^{2}}
Graph
Share
Copied to clipboard
\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)}{2-x}-\frac{4}{2-x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+x times \frac{2-x}{2-x}.
\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)-4}{2-x}}
Since \frac{\left(2+x\right)\left(2-x\right)}{2-x} and \frac{4}{2-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x}{x-2}}{\frac{4-2x+2x-x^{2}-4}{2-x}}
Do the multiplications in \left(2+x\right)\left(2-x\right)-4.
\frac{\frac{x}{x-2}}{\frac{-x^{2}}{2-x}}
Combine like terms in 4-2x+2x-x^{2}-4.
\frac{x\left(2-x\right)}{\left(x-2\right)\left(-1\right)x^{2}}
Divide \frac{x}{x-2} by \frac{-x^{2}}{2-x} by multiplying \frac{x}{x-2} by the reciprocal of \frac{-x^{2}}{2-x}.
\frac{-x\left(x-2\right)}{-\left(x-2\right)x^{2}}
Extract the negative sign in 2-x.
\frac{1}{x}
Cancel out -x\left(x-2\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)}{2-x}-\frac{4}{2-x}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+x times \frac{2-x}{2-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)-4}{2-x}})
Since \frac{\left(2+x\right)\left(2-x\right)}{2-x} and \frac{4}{2-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{4-2x+2x-x^{2}-4}{2-x}})
Do the multiplications in \left(2+x\right)\left(2-x\right)-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{-x^{2}}{2-x}})
Combine like terms in 4-2x+2x-x^{2}-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(2-x\right)}{\left(x-2\right)\left(-1\right)x^{2}})
Divide \frac{x}{x-2} by \frac{-x^{2}}{2-x} by multiplying \frac{x}{x-2} by the reciprocal of \frac{-x^{2}}{2-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x\left(x-2\right)}{-\left(x-2\right)x^{2}})
Extract the negative sign in 2-x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})
Cancel out -x\left(x-2\right) in both numerator and denominator.
-x^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-x^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}