Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)}{2-x}-\frac{4}{2-x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+x times \frac{2-x}{2-x}.
\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)-4}{2-x}}
Since \frac{\left(2+x\right)\left(2-x\right)}{2-x} and \frac{4}{2-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x}{x-2}}{\frac{4-2x+2x-x^{2}-4}{2-x}}
Do the multiplications in \left(2+x\right)\left(2-x\right)-4.
\frac{\frac{x}{x-2}}{\frac{-x^{2}}{2-x}}
Combine like terms in 4-2x+2x-x^{2}-4.
\frac{x\left(2-x\right)}{\left(x-2\right)\left(-1\right)x^{2}}
Divide \frac{x}{x-2} by \frac{-x^{2}}{2-x} by multiplying \frac{x}{x-2} by the reciprocal of \frac{-x^{2}}{2-x}.
\frac{-x\left(x-2\right)}{-\left(x-2\right)x^{2}}
Extract the negative sign in 2-x.
\frac{1}{x}
Cancel out -x\left(x-2\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)}{2-x}-\frac{4}{2-x}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2+x times \frac{2-x}{2-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{\left(2+x\right)\left(2-x\right)-4}{2-x}})
Since \frac{\left(2+x\right)\left(2-x\right)}{2-x} and \frac{4}{2-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{4-2x+2x-x^{2}-4}{2-x}})
Do the multiplications in \left(2+x\right)\left(2-x\right)-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{x}{x-2}}{\frac{-x^{2}}{2-x}})
Combine like terms in 4-2x+2x-x^{2}-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(2-x\right)}{\left(x-2\right)\left(-1\right)x^{2}})
Divide \frac{x}{x-2} by \frac{-x^{2}}{2-x} by multiplying \frac{x}{x-2} by the reciprocal of \frac{-x^{2}}{2-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x\left(x-2\right)}{-\left(x-2\right)x^{2}})
Extract the negative sign in 2-x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})
Cancel out -x\left(x-2\right) in both numerator and denominator.
-x^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-x^{-2}
Subtract 1 from -1.