Solve for x
x=-3
x=-2
Graph
Share
Copied to clipboard
\left(x+8\right)x=\left(x-2\right)\times 3
Variable x cannot be equal to any of the values -8,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+8\right), the least common multiple of x-2,x+8.
x^{2}+8x=\left(x-2\right)\times 3
Use the distributive property to multiply x+8 by x.
x^{2}+8x=3x-6
Use the distributive property to multiply x-2 by 3.
x^{2}+8x-3x=-6
Subtract 3x from both sides.
x^{2}+5x=-6
Combine 8x and -3x to get 5x.
x^{2}+5x+6=0
Add 6 to both sides.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Square 5.
x=\frac{-5±\sqrt{25-24}}{2}
Multiply -4 times 6.
x=\frac{-5±\sqrt{1}}{2}
Add 25 to -24.
x=\frac{-5±1}{2}
Take the square root of 1.
x=-\frac{4}{2}
Now solve the equation x=\frac{-5±1}{2} when ± is plus. Add -5 to 1.
x=-2
Divide -4 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{-5±1}{2} when ± is minus. Subtract 1 from -5.
x=-3
Divide -6 by 2.
x=-2 x=-3
The equation is now solved.
\left(x+8\right)x=\left(x-2\right)\times 3
Variable x cannot be equal to any of the values -8,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+8\right), the least common multiple of x-2,x+8.
x^{2}+8x=\left(x-2\right)\times 3
Use the distributive property to multiply x+8 by x.
x^{2}+8x=3x-6
Use the distributive property to multiply x-2 by 3.
x^{2}+8x-3x=-6
Subtract 3x from both sides.
x^{2}+5x=-6
Combine 8x and -3x to get 5x.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Simplify.
x=-2 x=-3
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}