Solve for x
x=3
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\left(x-1\right)x+\left(x-2\right)\times 4=5\left(x-2\right)\left(x-1\right)
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-2,x-1.
x^{2}-x+\left(x-2\right)\times 4=5\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x-1 by x.
x^{2}-x+4x-8=5\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x-2 by 4.
x^{2}+3x-8=5\left(x-2\right)\left(x-1\right)
Combine -x and 4x to get 3x.
x^{2}+3x-8=\left(5x-10\right)\left(x-1\right)
Use the distributive property to multiply 5 by x-2.
x^{2}+3x-8=5x^{2}-15x+10
Use the distributive property to multiply 5x-10 by x-1 and combine like terms.
x^{2}+3x-8-5x^{2}=-15x+10
Subtract 5x^{2} from both sides.
-4x^{2}+3x-8=-15x+10
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+3x-8+15x=10
Add 15x to both sides.
-4x^{2}+18x-8=10
Combine 3x and 15x to get 18x.
-4x^{2}+18x-8-10=0
Subtract 10 from both sides.
-4x^{2}+18x-18=0
Subtract 10 from -8 to get -18.
x=\frac{-18±\sqrt{18^{2}-4\left(-4\right)\left(-18\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 18 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-4\right)\left(-18\right)}}{2\left(-4\right)}
Square 18.
x=\frac{-18±\sqrt{324+16\left(-18\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-18±\sqrt{324-288}}{2\left(-4\right)}
Multiply 16 times -18.
x=\frac{-18±\sqrt{36}}{2\left(-4\right)}
Add 324 to -288.
x=\frac{-18±6}{2\left(-4\right)}
Take the square root of 36.
x=\frac{-18±6}{-8}
Multiply 2 times -4.
x=-\frac{12}{-8}
Now solve the equation x=\frac{-18±6}{-8} when ± is plus. Add -18 to 6.
x=\frac{3}{2}
Reduce the fraction \frac{-12}{-8} to lowest terms by extracting and canceling out 4.
x=-\frac{24}{-8}
Now solve the equation x=\frac{-18±6}{-8} when ± is minus. Subtract 6 from -18.
x=3
Divide -24 by -8.
x=\frac{3}{2} x=3
The equation is now solved.
\left(x-1\right)x+\left(x-2\right)\times 4=5\left(x-2\right)\left(x-1\right)
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-2,x-1.
x^{2}-x+\left(x-2\right)\times 4=5\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x-1 by x.
x^{2}-x+4x-8=5\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x-2 by 4.
x^{2}+3x-8=5\left(x-2\right)\left(x-1\right)
Combine -x and 4x to get 3x.
x^{2}+3x-8=\left(5x-10\right)\left(x-1\right)
Use the distributive property to multiply 5 by x-2.
x^{2}+3x-8=5x^{2}-15x+10
Use the distributive property to multiply 5x-10 by x-1 and combine like terms.
x^{2}+3x-8-5x^{2}=-15x+10
Subtract 5x^{2} from both sides.
-4x^{2}+3x-8=-15x+10
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}+3x-8+15x=10
Add 15x to both sides.
-4x^{2}+18x-8=10
Combine 3x and 15x to get 18x.
-4x^{2}+18x=10+8
Add 8 to both sides.
-4x^{2}+18x=18
Add 10 and 8 to get 18.
\frac{-4x^{2}+18x}{-4}=\frac{18}{-4}
Divide both sides by -4.
x^{2}+\frac{18}{-4}x=\frac{18}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{9}{2}x=\frac{18}{-4}
Reduce the fraction \frac{18}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{9}{2}x=-\frac{9}{2}
Reduce the fraction \frac{18}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{9}{2}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{9}{2}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{9}{16}
Add -\frac{9}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{3}{4} x-\frac{9}{4}=-\frac{3}{4}
Simplify.
x=3 x=\frac{3}{2}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}