Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{2x+1}{x+2} times \frac{x-2}{x-2}.
\frac{x\left(x+2\right)+\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
Since \frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+2x^{2}-4x+x-2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
Do the multiplications in x\left(x+2\right)+\left(2x+1\right)\left(x-2\right).
\frac{3x^{2}-x-2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
Combine like terms in x^{2}+2x+2x^{2}-4x+x-2.
\frac{3x^{2}-x-2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{3x^{2}-x-2+1}{\left(x-2\right)\left(x+2\right)}
Since \frac{3x^{2}-x-2}{\left(x-2\right)\left(x+2\right)} and \frac{1}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}-x-1}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 3x^{2}-x-2+1.
\frac{3x^{2}-x-1}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{x}{x-2} times \frac{x+2}{x+2}. Multiply \frac{2x+1}{x+2} times \frac{x-2}{x-2}.
\frac{x\left(x+2\right)+\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
Since \frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+2x^{2}-4x+x-2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
Do the multiplications in x\left(x+2\right)+\left(2x+1\right)\left(x-2\right).
\frac{3x^{2}-x-2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x^{2}-4}
Combine like terms in x^{2}+2x+2x^{2}-4x+x-2.
\frac{3x^{2}-x-2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{3x^{2}-x-2+1}{\left(x-2\right)\left(x+2\right)}
Since \frac{3x^{2}-x-2}{\left(x-2\right)\left(x+2\right)} and \frac{1}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}-x-1}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 3x^{2}-x-2+1.
\frac{3x^{2}-x-1}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).