Evaluate
\frac{1}{2\left(x^{2}+x+1\right)}
Factor
\frac{1}{2\left(x^{2}+x+1\right)}
Graph
Share
Copied to clipboard
\frac{x}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{1}{2\left(x+1\right)}-\frac{1}{x^{2}-1}+\frac{x^{2}}{2x^{3}-2}
Factor x^{3}-1. Factor 2x+2.
\frac{x\times 2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}-\frac{\left(x-1\right)\left(x^{2}+x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}-\frac{1}{x^{2}-1}+\frac{x^{2}}{2x^{3}-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and 2\left(x+1\right) is 2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right). Multiply \frac{x}{\left(x-1\right)\left(x^{2}+x+1\right)} times \frac{2\left(x+1\right)}{2\left(x+1\right)}. Multiply \frac{1}{2\left(x+1\right)} times \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{x\times 2\left(x+1\right)-\left(x-1\right)\left(x^{2}+x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}-\frac{1}{x^{2}-1}+\frac{x^{2}}{2x^{3}-2}
Since \frac{x\times 2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)} and \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+2x-x^{3}-x^{2}-x+x^{2}+x+1}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}-\frac{1}{x^{2}-1}+\frac{x^{2}}{2x^{3}-2}
Do the multiplications in x\times 2\left(x+1\right)-\left(x-1\right)\left(x^{2}+x+1\right).
\frac{2x^{2}+2x-x^{3}+1}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}-\frac{1}{x^{2}-1}+\frac{x^{2}}{2x^{3}-2}
Combine like terms in 2x^{2}+2x-x^{3}-x^{2}-x+x^{2}+x+1.
\frac{2x^{2}+2x-x^{3}+1}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}-\frac{1}{\left(x-1\right)\left(x+1\right)}+\frac{x^{2}}{2x^{3}-2}
Factor x^{2}-1.
\frac{2x^{2}+2x-x^{3}+1}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}-\frac{2\left(x^{2}+x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}+\frac{x^{2}}{2x^{3}-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right) and \left(x-1\right)\left(x+1\right) is 2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right). Multiply \frac{1}{\left(x-1\right)\left(x+1\right)} times \frac{2\left(x^{2}+x+1\right)}{2\left(x^{2}+x+1\right)}.
\frac{2x^{2}+2x-x^{3}+1-2\left(x^{2}+x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}+\frac{x^{2}}{2x^{3}-2}
Since \frac{2x^{2}+2x-x^{3}+1}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)} and \frac{2\left(x^{2}+x+1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+2x-x^{3}+1-2x^{2}-2x-2}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}+\frac{x^{2}}{2x^{3}-2}
Do the multiplications in 2x^{2}+2x-x^{3}+1-2\left(x^{2}+x+1\right).
\frac{-x^{3}-1}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}+\frac{x^{2}}{2x^{3}-2}
Combine like terms in 2x^{2}+2x-x^{3}+1-2x^{2}-2x-2.
\frac{\left(x+1\right)\left(-x^{2}+x-1\right)}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}+\frac{x^{2}}{2x^{3}-2}
Factor the expressions that are not already factored in \frac{-x^{3}-1}{2\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)}.
\frac{-x^{2}+x-1}{2\left(x-1\right)\left(x^{2}+x+1\right)}+\frac{x^{2}}{2x^{3}-2}
Cancel out x+1 in both numerator and denominator.
\frac{-x^{2}+x-1}{2\left(x-1\right)\left(x^{2}+x+1\right)}+\frac{x^{2}}{2\left(x-1\right)\left(x^{2}+x+1\right)}
Factor 2x^{3}-2.
\frac{-x^{2}+x-1+x^{2}}{2\left(x-1\right)\left(x^{2}+x+1\right)}
Since \frac{-x^{2}+x-1}{2\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{x^{2}}{2\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, add them by adding their numerators.
\frac{x-1}{2\left(x-1\right)\left(x^{2}+x+1\right)}
Combine like terms in -x^{2}+x-1+x^{2}.
\frac{1}{2\left(x^{2}+x+1\right)}
Cancel out x-1 in both numerator and denominator.
\frac{1}{2x^{2}+2x+2}
Expand 2\left(x^{2}+x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}