Solve for x
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Share
Copied to clipboard
\left(x+2\right)x=\left(x-2\right)\times 6+\left(x-3\right)\left(x+1\right)
Variable x cannot be equal to any of the values -2,2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right)\left(x+2\right), the least common multiple of x^{2}-5x+6,x^{2}-x-6,x^{2}-4.
x^{2}+2x=\left(x-2\right)\times 6+\left(x-3\right)\left(x+1\right)
Use the distributive property to multiply x+2 by x.
x^{2}+2x=6x-12+\left(x-3\right)\left(x+1\right)
Use the distributive property to multiply x-2 by 6.
x^{2}+2x=6x-12+x^{2}-2x-3
Use the distributive property to multiply x-3 by x+1 and combine like terms.
x^{2}+2x=4x-12+x^{2}-3
Combine 6x and -2x to get 4x.
x^{2}+2x=4x-15+x^{2}
Subtract 3 from -12 to get -15.
x^{2}+2x-4x=-15+x^{2}
Subtract 4x from both sides.
x^{2}-2x=-15+x^{2}
Combine 2x and -4x to get -2x.
x^{2}-2x-x^{2}=-15
Subtract x^{2} from both sides.
-2x=-15
Combine x^{2} and -x^{2} to get 0.
x=\frac{-15}{-2}
Divide both sides by -2.
x=\frac{15}{2}
Fraction \frac{-15}{-2} can be simplified to \frac{15}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}