Solve for x
x = \frac{\sqrt{1037} + 29}{14} \approx 4.371606027
x=\frac{29-\sqrt{1037}}{14}\approx -0.228748884
Graph
Share
Copied to clipboard
x=7\left(x-\left(\sqrt{5}+2\right)\right)\left(x-\left(-\sqrt{5}+2\right)\right)
Multiply both sides of the equation by \left(x-\left(\sqrt{5}+2\right)\right)\left(x-\left(-\sqrt{5}+2\right)\right).
x=7\left(x-\sqrt{5}-2\right)\left(x-\left(-\sqrt{5}+2\right)\right)
To find the opposite of \sqrt{5}+2, find the opposite of each term.
x=7\left(x-\sqrt{5}-2\right)\left(x+\sqrt{5}-2\right)
To find the opposite of -\sqrt{5}+2, find the opposite of each term.
x=\left(7x-7\sqrt{5}-14\right)\left(x+\sqrt{5}-2\right)
Use the distributive property to multiply 7 by x-\sqrt{5}-2.
x=7x^{2}-28x-7\left(\sqrt{5}\right)^{2}+28
Use the distributive property to multiply 7x-7\sqrt{5}-14 by x+\sqrt{5}-2 and combine like terms.
x=7x^{2}-28x-7\times 5+28
The square of \sqrt{5} is 5.
x=7x^{2}-28x-35+28
Multiply -7 and 5 to get -35.
x=7x^{2}-28x-7
Add -35 and 28 to get -7.
x-7x^{2}=-28x-7
Subtract 7x^{2} from both sides.
x-7x^{2}+28x=-7
Add 28x to both sides.
29x-7x^{2}=-7
Combine x and 28x to get 29x.
29x-7x^{2}+7=0
Add 7 to both sides.
-7x^{2}+29x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-29±\sqrt{29^{2}-4\left(-7\right)\times 7}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 29 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-29±\sqrt{841-4\left(-7\right)\times 7}}{2\left(-7\right)}
Square 29.
x=\frac{-29±\sqrt{841+28\times 7}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-29±\sqrt{841+196}}{2\left(-7\right)}
Multiply 28 times 7.
x=\frac{-29±\sqrt{1037}}{2\left(-7\right)}
Add 841 to 196.
x=\frac{-29±\sqrt{1037}}{-14}
Multiply 2 times -7.
x=\frac{\sqrt{1037}-29}{-14}
Now solve the equation x=\frac{-29±\sqrt{1037}}{-14} when ± is plus. Add -29 to \sqrt{1037}.
x=\frac{29-\sqrt{1037}}{14}
Divide -29+\sqrt{1037} by -14.
x=\frac{-\sqrt{1037}-29}{-14}
Now solve the equation x=\frac{-29±\sqrt{1037}}{-14} when ± is minus. Subtract \sqrt{1037} from -29.
x=\frac{\sqrt{1037}+29}{14}
Divide -29-\sqrt{1037} by -14.
x=\frac{29-\sqrt{1037}}{14} x=\frac{\sqrt{1037}+29}{14}
The equation is now solved.
x=7\left(x-\left(\sqrt{5}+2\right)\right)\left(x-\left(-\sqrt{5}+2\right)\right)
Multiply both sides of the equation by \left(x-\left(\sqrt{5}+2\right)\right)\left(x-\left(-\sqrt{5}+2\right)\right).
x=7\left(x-\sqrt{5}-2\right)\left(x-\left(-\sqrt{5}+2\right)\right)
To find the opposite of \sqrt{5}+2, find the opposite of each term.
x=7\left(x-\sqrt{5}-2\right)\left(x+\sqrt{5}-2\right)
To find the opposite of -\sqrt{5}+2, find the opposite of each term.
x=\left(7x-7\sqrt{5}-14\right)\left(x+\sqrt{5}-2\right)
Use the distributive property to multiply 7 by x-\sqrt{5}-2.
x=7x^{2}-28x-7\left(\sqrt{5}\right)^{2}+28
Use the distributive property to multiply 7x-7\sqrt{5}-14 by x+\sqrt{5}-2 and combine like terms.
x=7x^{2}-28x-7\times 5+28
The square of \sqrt{5} is 5.
x=7x^{2}-28x-35+28
Multiply -7 and 5 to get -35.
x=7x^{2}-28x-7
Add -35 and 28 to get -7.
x-7x^{2}=-28x-7
Subtract 7x^{2} from both sides.
x-7x^{2}+28x=-7
Add 28x to both sides.
29x-7x^{2}=-7
Combine x and 28x to get 29x.
-7x^{2}+29x=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-7x^{2}+29x}{-7}=-\frac{7}{-7}
Divide both sides by -7.
x^{2}+\frac{29}{-7}x=-\frac{7}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{29}{7}x=-\frac{7}{-7}
Divide 29 by -7.
x^{2}-\frac{29}{7}x=1
Divide -7 by -7.
x^{2}-\frac{29}{7}x+\left(-\frac{29}{14}\right)^{2}=1+\left(-\frac{29}{14}\right)^{2}
Divide -\frac{29}{7}, the coefficient of the x term, by 2 to get -\frac{29}{14}. Then add the square of -\frac{29}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{29}{7}x+\frac{841}{196}=1+\frac{841}{196}
Square -\frac{29}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{29}{7}x+\frac{841}{196}=\frac{1037}{196}
Add 1 to \frac{841}{196}.
\left(x-\frac{29}{14}\right)^{2}=\frac{1037}{196}
Factor x^{2}-\frac{29}{7}x+\frac{841}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{14}\right)^{2}}=\sqrt{\frac{1037}{196}}
Take the square root of both sides of the equation.
x-\frac{29}{14}=\frac{\sqrt{1037}}{14} x-\frac{29}{14}=-\frac{\sqrt{1037}}{14}
Simplify.
x=\frac{\sqrt{1037}+29}{14} x=\frac{29-\sqrt{1037}}{14}
Add \frac{29}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}