Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2x-1}{\left(x-5\right)\left(x+2\right)}
Factor x^{2}-4. Factor x^{2}-3x-10.
\frac{x\left(x-5\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}-\frac{\left(2x-1\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-2\right)\left(x+2\right). Multiply \frac{x}{\left(x-2\right)\left(x+2\right)} times \frac{x-5}{x-5}. Multiply \frac{2x-1}{\left(x-5\right)\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{x\left(x-5\right)-\left(2x-1\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
Since \frac{x\left(x-5\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)} and \frac{\left(2x-1\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-5x-2x^{2}+4x+x-2}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
Do the multiplications in x\left(x-5\right)-\left(2x-1\right)\left(x-2\right).
\frac{-x^{2}-2}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-5x-2x^{2}+4x+x-2.
\frac{-x^{2}-2}{x^{3}-5x^{2}-4x+20}
Expand \left(x-5\right)\left(x-2\right)\left(x+2\right).
\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2x-1}{\left(x-5\right)\left(x+2\right)}
Factor x^{2}-4. Factor x^{2}-3x-10.
\frac{x\left(x-5\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}-\frac{\left(2x-1\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-2\right)\left(x+2\right). Multiply \frac{x}{\left(x-2\right)\left(x+2\right)} times \frac{x-5}{x-5}. Multiply \frac{2x-1}{\left(x-5\right)\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{x\left(x-5\right)-\left(2x-1\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
Since \frac{x\left(x-5\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)} and \frac{\left(2x-1\right)\left(x-2\right)}{\left(x-5\right)\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-5x-2x^{2}+4x+x-2}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
Do the multiplications in x\left(x-5\right)-\left(2x-1\right)\left(x-2\right).
\frac{-x^{2}-2}{\left(x-5\right)\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-5x-2x^{2}+4x+x-2.
\frac{-x^{2}-2}{x^{3}-5x^{2}-4x+20}
Expand \left(x-5\right)\left(x-2\right)\left(x+2\right).