Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-3}
Factor x^{2}-4.
\frac{x\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-3 is \left(x-3\right)\left(x-2\right)\left(x+2\right). Multiply \frac{x}{\left(x-2\right)\left(x+2\right)} times \frac{x-3}{x-3}. Multiply \frac{1}{x-3} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{x\left(x-3\right)+\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)\left(x+2\right)}
Since \frac{x\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+2\right)} and \frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x+x^{2}+2x-2x-4}{\left(x-3\right)\left(x-2\right)\left(x+2\right)}
Do the multiplications in x\left(x-3\right)+\left(x-2\right)\left(x+2\right).
\frac{2x^{2}-3x-4}{\left(x-3\right)\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-3x+x^{2}+2x-2x-4.
\frac{2x^{2}-3x-4}{x^{3}-3x^{2}-4x+12}
Expand \left(x-3\right)\left(x-2\right)\left(x+2\right).