Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\left(x-1\right)x+\left(x+1\right)\left(2x-3\right)=\left(x-1\right)^{2}\times 3
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x-1\right)^{2}, the least common multiple of x^{2}-1,x^{2}-2x+1,x+1.
x^{2}-x+\left(x+1\right)\left(2x-3\right)=\left(x-1\right)^{2}\times 3
Use the distributive property to multiply x-1 by x.
x^{2}-x+2x^{2}-x-3=\left(x-1\right)^{2}\times 3
Use the distributive property to multiply x+1 by 2x-3 and combine like terms.
3x^{2}-x-x-3=\left(x-1\right)^{2}\times 3
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-2x-3=\left(x-1\right)^{2}\times 3
Combine -x and -x to get -2x.
3x^{2}-2x-3=\left(x^{2}-2x+1\right)\times 3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
3x^{2}-2x-3=3x^{2}-6x+3
Use the distributive property to multiply x^{2}-2x+1 by 3.
3x^{2}-2x-3-3x^{2}=-6x+3
Subtract 3x^{2} from both sides.
-2x-3=-6x+3
Combine 3x^{2} and -3x^{2} to get 0.
-2x-3+6x=3
Add 6x to both sides.
4x-3=3
Combine -2x and 6x to get 4x.
4x=3+3
Add 3 to both sides.
4x=6
Add 3 and 3 to get 6.
x=\frac{6}{4}
Divide both sides by 4.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}