Solve for x
x=5
Graph
Share
Copied to clipboard
\left(8x+24\right)x+\left(x+3\right)x\times 7=8x^{2}\times 3
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by 8\left(x+3\right)x^{2}, the least common multiple of x^{2},8x,x+3.
8x^{2}+24x+\left(x+3\right)x\times 7=8x^{2}\times 3
Use the distributive property to multiply 8x+24 by x.
8x^{2}+24x+\left(x^{2}+3x\right)\times 7=8x^{2}\times 3
Use the distributive property to multiply x+3 by x.
8x^{2}+24x+7x^{2}+21x=8x^{2}\times 3
Use the distributive property to multiply x^{2}+3x by 7.
15x^{2}+24x+21x=8x^{2}\times 3
Combine 8x^{2} and 7x^{2} to get 15x^{2}.
15x^{2}+45x=8x^{2}\times 3
Combine 24x and 21x to get 45x.
15x^{2}+45x=24x^{2}
Multiply 8 and 3 to get 24.
15x^{2}+45x-24x^{2}=0
Subtract 24x^{2} from both sides.
-9x^{2}+45x=0
Combine 15x^{2} and -24x^{2} to get -9x^{2}.
x\left(-9x+45\right)=0
Factor out x.
x=0 x=5
To find equation solutions, solve x=0 and -9x+45=0.
x=5
Variable x cannot be equal to 0.
\left(8x+24\right)x+\left(x+3\right)x\times 7=8x^{2}\times 3
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by 8\left(x+3\right)x^{2}, the least common multiple of x^{2},8x,x+3.
8x^{2}+24x+\left(x+3\right)x\times 7=8x^{2}\times 3
Use the distributive property to multiply 8x+24 by x.
8x^{2}+24x+\left(x^{2}+3x\right)\times 7=8x^{2}\times 3
Use the distributive property to multiply x+3 by x.
8x^{2}+24x+7x^{2}+21x=8x^{2}\times 3
Use the distributive property to multiply x^{2}+3x by 7.
15x^{2}+24x+21x=8x^{2}\times 3
Combine 8x^{2} and 7x^{2} to get 15x^{2}.
15x^{2}+45x=8x^{2}\times 3
Combine 24x and 21x to get 45x.
15x^{2}+45x=24x^{2}
Multiply 8 and 3 to get 24.
15x^{2}+45x-24x^{2}=0
Subtract 24x^{2} from both sides.
-9x^{2}+45x=0
Combine 15x^{2} and -24x^{2} to get -9x^{2}.
x=\frac{-45±\sqrt{45^{2}}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 45 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±45}{2\left(-9\right)}
Take the square root of 45^{2}.
x=\frac{-45±45}{-18}
Multiply 2 times -9.
x=\frac{0}{-18}
Now solve the equation x=\frac{-45±45}{-18} when ± is plus. Add -45 to 45.
x=0
Divide 0 by -18.
x=-\frac{90}{-18}
Now solve the equation x=\frac{-45±45}{-18} when ± is minus. Subtract 45 from -45.
x=5
Divide -90 by -18.
x=0 x=5
The equation is now solved.
x=5
Variable x cannot be equal to 0.
\left(8x+24\right)x+\left(x+3\right)x\times 7=8x^{2}\times 3
Variable x cannot be equal to any of the values -3,0 since division by zero is not defined. Multiply both sides of the equation by 8\left(x+3\right)x^{2}, the least common multiple of x^{2},8x,x+3.
8x^{2}+24x+\left(x+3\right)x\times 7=8x^{2}\times 3
Use the distributive property to multiply 8x+24 by x.
8x^{2}+24x+\left(x^{2}+3x\right)\times 7=8x^{2}\times 3
Use the distributive property to multiply x+3 by x.
8x^{2}+24x+7x^{2}+21x=8x^{2}\times 3
Use the distributive property to multiply x^{2}+3x by 7.
15x^{2}+24x+21x=8x^{2}\times 3
Combine 8x^{2} and 7x^{2} to get 15x^{2}.
15x^{2}+45x=8x^{2}\times 3
Combine 24x and 21x to get 45x.
15x^{2}+45x=24x^{2}
Multiply 8 and 3 to get 24.
15x^{2}+45x-24x^{2}=0
Subtract 24x^{2} from both sides.
-9x^{2}+45x=0
Combine 15x^{2} and -24x^{2} to get -9x^{2}.
\frac{-9x^{2}+45x}{-9}=\frac{0}{-9}
Divide both sides by -9.
x^{2}+\frac{45}{-9}x=\frac{0}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-5x=\frac{0}{-9}
Divide 45 by -9.
x^{2}-5x=0
Divide 0 by -9.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Simplify.
x=5 x=0
Add \frac{5}{2} to both sides of the equation.
x=5
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}