Solve for x
x=6
Graph
Share
Copied to clipboard
\left(x+3\right)x-\left(x+2\right)\times 3=\left(x-1\right)x
Variable x cannot be equal to any of the values -3,-2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right)\left(x+3\right), the least common multiple of x^{2}+x-2,x^{2}+2x-3,x^{2}+5x+6.
x^{2}+3x-\left(x+2\right)\times 3=\left(x-1\right)x
Use the distributive property to multiply x+3 by x.
x^{2}+3x-\left(3x+6\right)=\left(x-1\right)x
Use the distributive property to multiply x+2 by 3.
x^{2}+3x-3x-6=\left(x-1\right)x
To find the opposite of 3x+6, find the opposite of each term.
x^{2}-6=\left(x-1\right)x
Combine 3x and -3x to get 0.
x^{2}-6=x^{2}-x
Use the distributive property to multiply x-1 by x.
x^{2}-6-x^{2}=-x
Subtract x^{2} from both sides.
-6=-x
Combine x^{2} and -x^{2} to get 0.
-x=-6
Swap sides so that all variable terms are on the left hand side.
x=6
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}