Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\left(x+2\right)}{\left(x^{2}+6x+8\right)\left(x-2\right)}+\frac{4}{x^{2}+2x-8}
Divide \frac{x}{x^{2}+6x+8} by \frac{x-2}{x+2} by multiplying \frac{x}{x^{2}+6x+8} by the reciprocal of \frac{x-2}{x+2}.
\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+4\right)}+\frac{4}{x^{2}+2x-8}
Factor the expressions that are not already factored in \frac{x\left(x+2\right)}{\left(x^{2}+6x+8\right)\left(x-2\right)}.
\frac{x}{\left(x-2\right)\left(x+4\right)}+\frac{4}{x^{2}+2x-8}
Cancel out x+2 in both numerator and denominator.
\frac{x}{\left(x-2\right)\left(x+4\right)}+\frac{4}{\left(x-2\right)\left(x+4\right)}
Factor x^{2}+2x-8.
\frac{x+4}{\left(x-2\right)\left(x+4\right)}
Since \frac{x}{\left(x-2\right)\left(x+4\right)} and \frac{4}{\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{1}{x-2}
Cancel out x+4 in both numerator and denominator.
\frac{x\left(x+2\right)}{\left(x^{2}+6x+8\right)\left(x-2\right)}+\frac{4}{x^{2}+2x-8}
Divide \frac{x}{x^{2}+6x+8} by \frac{x-2}{x+2} by multiplying \frac{x}{x^{2}+6x+8} by the reciprocal of \frac{x-2}{x+2}.
\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+4\right)}+\frac{4}{x^{2}+2x-8}
Factor the expressions that are not already factored in \frac{x\left(x+2\right)}{\left(x^{2}+6x+8\right)\left(x-2\right)}.
\frac{x}{\left(x-2\right)\left(x+4\right)}+\frac{4}{x^{2}+2x-8}
Cancel out x+2 in both numerator and denominator.
\frac{x}{\left(x-2\right)\left(x+4\right)}+\frac{4}{\left(x-2\right)\left(x+4\right)}
Factor x^{2}+2x-8.
\frac{x+4}{\left(x-2\right)\left(x+4\right)}
Since \frac{x}{\left(x-2\right)\left(x+4\right)} and \frac{4}{\left(x-2\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{1}{x-2}
Cancel out x+4 in both numerator and denominator.