Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{\left(x+1\right)\left(x+2\right)}+\frac{2x-3}{\left(x-1\right)\left(x+1\right)}
Factor x^{2}+3x+2. Factor 1x^{2}-1.
\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{\left(2x-3\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{x}{\left(x+1\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{2x-3}{\left(x-1\right)\left(x+1\right)} times \frac{x+2}{x+2}.
\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(2x-3\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-x+2x^{2}+4x-3x-6}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in x\left(x-1\right)+\left(2x-3\right)\left(x+2\right).
\frac{3x^{2}-6}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in x^{2}-x+2x^{2}+4x-3x-6.
\frac{3x^{2}-6}{x^{3}+2x^{2}-x-2}
Expand \left(x-1\right)\left(x+1\right)\left(x+2\right).
\frac{x}{\left(x+1\right)\left(x+2\right)}+\frac{2x-3}{\left(x-1\right)\left(x+1\right)}
Factor x^{2}+3x+2. Factor 1x^{2}-1.
\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}+\frac{\left(2x-3\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right)\left(x+2\right). Multiply \frac{x}{\left(x+1\right)\left(x+2\right)} times \frac{x-1}{x-1}. Multiply \frac{2x-3}{\left(x-1\right)\left(x+1\right)} times \frac{x+2}{x+2}.
\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Since \frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} and \frac{\left(2x-3\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-x+2x^{2}+4x-3x-6}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Do the multiplications in x\left(x-1\right)+\left(2x-3\right)\left(x+2\right).
\frac{3x^{2}-6}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}
Combine like terms in x^{2}-x+2x^{2}+4x-3x-6.
\frac{3x^{2}-6}{x^{3}+2x^{2}-x-2}
Expand \left(x-1\right)\left(x+1\right)\left(x+2\right).