Evaluate
\frac{x^{2}+3}{\left(x+3\right)\left(x-1\right)^{2}}
Differentiate w.r.t. x
-\frac{\left(x+1\right)\left(x^{2}+15\right)}{\left(x+3\right)^{2}\left(x-1\right)^{3}}
Graph
Share
Copied to clipboard
\frac{x}{\left(x-1\right)\left(x+3\right)}+\frac{1}{\left(x-1\right)^{2}}
Factor x^{2}+2x-3. Factor 1-2x+x^{2}.
\frac{x\left(x-1\right)}{\left(x+3\right)\left(x-1\right)^{2}}+\frac{x+3}{\left(x+3\right)\left(x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+3\right) and \left(x-1\right)^{2} is \left(x+3\right)\left(x-1\right)^{2}. Multiply \frac{x}{\left(x-1\right)\left(x+3\right)} times \frac{x-1}{x-1}. Multiply \frac{1}{\left(x-1\right)^{2}} times \frac{x+3}{x+3}.
\frac{x\left(x-1\right)+x+3}{\left(x+3\right)\left(x-1\right)^{2}}
Since \frac{x\left(x-1\right)}{\left(x+3\right)\left(x-1\right)^{2}} and \frac{x+3}{\left(x+3\right)\left(x-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}-x+x+3}{\left(x+3\right)\left(x-1\right)^{2}}
Do the multiplications in x\left(x-1\right)+x+3.
\frac{x^{2}+3}{\left(x+3\right)\left(x-1\right)^{2}}
Combine like terms in x^{2}-x+x+3.
\frac{x^{2}+3}{x^{3}+x^{2}-5x+3}
Expand \left(x+3\right)\left(x-1\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}