Solve for x
x=2
Graph
Share
Copied to clipboard
\left(x-3\right)x-\left(x+3\right)x=3x-18
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x-3,x^{2}-9.
x^{2}-3x-\left(x+3\right)x=3x-18
Use the distributive property to multiply x-3 by x.
x^{2}-3x-\left(x^{2}+3x\right)=3x-18
Use the distributive property to multiply x+3 by x.
x^{2}-3x-x^{2}-3x=3x-18
To find the opposite of x^{2}+3x, find the opposite of each term.
-3x-3x=3x-18
Combine x^{2} and -x^{2} to get 0.
-6x=3x-18
Combine -3x and -3x to get -6x.
-6x-3x=-18
Subtract 3x from both sides.
-9x=-18
Combine -6x and -3x to get -9x.
x=\frac{-18}{-9}
Divide both sides by -9.
x=2
Divide -18 by -9 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}