Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)x+\left(x-2\right)\left(x+2\right)\left(-3\right)=8
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x+2,x^{2}-4.
x^{2}-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=8
Use the distributive property to multiply x-2 by x.
x^{2}-2x+\left(x^{2}-4\right)\left(-3\right)=8
Use the distributive property to multiply x-2 by x+2 and combine like terms.
x^{2}-2x-3x^{2}+12=8
Use the distributive property to multiply x^{2}-4 by -3.
-2x^{2}-2x+12=8
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-2x+12-8=0
Subtract 8 from both sides.
-2x^{2}-2x+4=0
Subtract 8 from 12 to get 4.
-x^{2}-x+2=0
Divide both sides by 2.
a+b=-1 ab=-2=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
a=1 b=-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-x^{2}+x\right)+\left(-2x+2\right)
Rewrite -x^{2}-x+2 as \left(-x^{2}+x\right)+\left(-2x+2\right).
x\left(-x+1\right)+2\left(-x+1\right)
Factor out x in the first and 2 in the second group.
\left(-x+1\right)\left(x+2\right)
Factor out common term -x+1 by using distributive property.
x=1 x=-2
To find equation solutions, solve -x+1=0 and x+2=0.
x=1
Variable x cannot be equal to -2.
\left(x-2\right)x+\left(x-2\right)\left(x+2\right)\left(-3\right)=8
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x+2,x^{2}-4.
x^{2}-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=8
Use the distributive property to multiply x-2 by x.
x^{2}-2x+\left(x^{2}-4\right)\left(-3\right)=8
Use the distributive property to multiply x-2 by x+2 and combine like terms.
x^{2}-2x-3x^{2}+12=8
Use the distributive property to multiply x^{2}-4 by -3.
-2x^{2}-2x+12=8
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-2x+12-8=0
Subtract 8 from both sides.
-2x^{2}-2x+4=0
Subtract 8 from 12 to get 4.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -2 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 4}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\times 4}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\left(-2\right)}
Multiply 8 times 4.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\left(-2\right)}
Add 4 to 32.
x=\frac{-\left(-2\right)±6}{2\left(-2\right)}
Take the square root of 36.
x=\frac{2±6}{2\left(-2\right)}
The opposite of -2 is 2.
x=\frac{2±6}{-4}
Multiply 2 times -2.
x=\frac{8}{-4}
Now solve the equation x=\frac{2±6}{-4} when ± is plus. Add 2 to 6.
x=-2
Divide 8 by -4.
x=-\frac{4}{-4}
Now solve the equation x=\frac{2±6}{-4} when ± is minus. Subtract 6 from 2.
x=1
Divide -4 by -4.
x=-2 x=1
The equation is now solved.
x=1
Variable x cannot be equal to -2.
\left(x-2\right)x+\left(x-2\right)\left(x+2\right)\left(-3\right)=8
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x+2,x^{2}-4.
x^{2}-2x+\left(x-2\right)\left(x+2\right)\left(-3\right)=8
Use the distributive property to multiply x-2 by x.
x^{2}-2x+\left(x^{2}-4\right)\left(-3\right)=8
Use the distributive property to multiply x-2 by x+2 and combine like terms.
x^{2}-2x-3x^{2}+12=8
Use the distributive property to multiply x^{2}-4 by -3.
-2x^{2}-2x+12=8
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-2x=8-12
Subtract 12 from both sides.
-2x^{2}-2x=-4
Subtract 12 from 8 to get -4.
\frac{-2x^{2}-2x}{-2}=-\frac{4}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{2}{-2}\right)x=-\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+x=-\frac{4}{-2}
Divide -2 by -2.
x^{2}+x=2
Divide -4 by -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Add 2 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Simplify.
x=1 x=-2
Subtract \frac{1}{2} from both sides of the equation.
x=1
Variable x cannot be equal to -2.