Evaluate
-\frac{x-1}{x-8}
Expand
-\frac{x-1}{x-8}
Graph
Share
Copied to clipboard
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{\frac{x^{2}-2x+1}{x-1}}{\frac{x-8}{2}}
Multiply \frac{x}{x+2} times \frac{x^{2}+x-2}{x^{2}-8x} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{\left(x^{2}-2x+1\right)\times 2}{\left(x-1\right)\left(x-8\right)}
Divide \frac{x^{2}-2x+1}{x-1} by \frac{x-8}{2} by multiplying \frac{x^{2}-2x+1}{x-1} by the reciprocal of \frac{x-8}{2}.
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{2\left(x-1\right)^{2}}{\left(x-8\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{\left(x^{2}-2x+1\right)\times 2}{\left(x-1\right)\left(x-8\right)}.
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{2\left(x-1\right)}{x-8}
Cancel out x-1 in both numerator and denominator.
\frac{x\left(x^{2}+x-2\right)}{x\left(x-8\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x-8}
Factor \left(x+2\right)\left(x^{2}-8x\right).
\frac{x\left(x^{2}+x-2\right)}{x\left(x-8\right)\left(x+2\right)}-\frac{2\left(x-1\right)x\left(x+2\right)}{x\left(x-8\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-8\right)\left(x+2\right) and x-8 is x\left(x-8\right)\left(x+2\right). Multiply \frac{2\left(x-1\right)}{x-8} times \frac{x\left(x+2\right)}{x\left(x+2\right)}.
\frac{x\left(x^{2}+x-2\right)-2\left(x-1\right)x\left(x+2\right)}{x\left(x-8\right)\left(x+2\right)}
Since \frac{x\left(x^{2}+x-2\right)}{x\left(x-8\right)\left(x+2\right)} and \frac{2\left(x-1\right)x\left(x+2\right)}{x\left(x-8\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+x^{2}-2x-2x^{3}-4x^{2}+2x^{2}+4x}{x\left(x-8\right)\left(x+2\right)}
Do the multiplications in x\left(x^{2}+x-2\right)-2\left(x-1\right)x\left(x+2\right).
\frac{-x^{3}-x^{2}+2x}{x\left(x-8\right)\left(x+2\right)}
Combine like terms in x^{3}+x^{2}-2x-2x^{3}-4x^{2}+2x^{2}+4x.
\frac{x\left(x+2\right)\left(-x+1\right)}{x\left(x-8\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{-x^{3}-x^{2}+2x}{x\left(x-8\right)\left(x+2\right)}.
\frac{-x+1}{x-8}
Cancel out x\left(x+2\right) in both numerator and denominator.
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{\frac{x^{2}-2x+1}{x-1}}{\frac{x-8}{2}}
Multiply \frac{x}{x+2} times \frac{x^{2}+x-2}{x^{2}-8x} by multiplying numerator times numerator and denominator times denominator.
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{\left(x^{2}-2x+1\right)\times 2}{\left(x-1\right)\left(x-8\right)}
Divide \frac{x^{2}-2x+1}{x-1} by \frac{x-8}{2} by multiplying \frac{x^{2}-2x+1}{x-1} by the reciprocal of \frac{x-8}{2}.
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{2\left(x-1\right)^{2}}{\left(x-8\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{\left(x^{2}-2x+1\right)\times 2}{\left(x-1\right)\left(x-8\right)}.
\frac{x\left(x^{2}+x-2\right)}{\left(x+2\right)\left(x^{2}-8x\right)}-\frac{2\left(x-1\right)}{x-8}
Cancel out x-1 in both numerator and denominator.
\frac{x\left(x^{2}+x-2\right)}{x\left(x-8\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x-8}
Factor \left(x+2\right)\left(x^{2}-8x\right).
\frac{x\left(x^{2}+x-2\right)}{x\left(x-8\right)\left(x+2\right)}-\frac{2\left(x-1\right)x\left(x+2\right)}{x\left(x-8\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-8\right)\left(x+2\right) and x-8 is x\left(x-8\right)\left(x+2\right). Multiply \frac{2\left(x-1\right)}{x-8} times \frac{x\left(x+2\right)}{x\left(x+2\right)}.
\frac{x\left(x^{2}+x-2\right)-2\left(x-1\right)x\left(x+2\right)}{x\left(x-8\right)\left(x+2\right)}
Since \frac{x\left(x^{2}+x-2\right)}{x\left(x-8\right)\left(x+2\right)} and \frac{2\left(x-1\right)x\left(x+2\right)}{x\left(x-8\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+x^{2}-2x-2x^{3}-4x^{2}+2x^{2}+4x}{x\left(x-8\right)\left(x+2\right)}
Do the multiplications in x\left(x^{2}+x-2\right)-2\left(x-1\right)x\left(x+2\right).
\frac{-x^{3}-x^{2}+2x}{x\left(x-8\right)\left(x+2\right)}
Combine like terms in x^{3}+x^{2}-2x-2x^{3}-4x^{2}+2x^{2}+4x.
\frac{x\left(x+2\right)\left(-x+1\right)}{x\left(x-8\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{-x^{3}-x^{2}+2x}{x\left(x-8\right)\left(x+2\right)}.
\frac{-x+1}{x-8}
Cancel out x\left(x+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}