Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\left(x+4\right)\left(x+5\right)x-\left(x+1\right)\left(x+4\right)\left(x+5\right)\left(x+1\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Variable x cannot be equal to any of the values -5,-4,-2,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right), the least common multiple of x+1,x+2,x+4,x+5.
\left(x^{2}+6x+8\right)\left(x+5\right)x-\left(x+1\right)\left(x+4\right)\left(x+5\right)\left(x+1\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Use the distributive property to multiply x+2 by x+4 and combine like terms.
\left(x^{3}+11x^{2}+38x+40\right)x-\left(x+1\right)\left(x+4\right)\left(x+5\right)\left(x+1\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Use the distributive property to multiply x^{2}+6x+8 by x+5 and combine like terms.
x^{4}+11x^{3}+38x^{2}+40x-\left(x+1\right)\left(x+4\right)\left(x+5\right)\left(x+1\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Use the distributive property to multiply x^{3}+11x^{2}+38x+40 by x.
x^{4}+11x^{3}+38x^{2}+40x-\left(x+1\right)^{2}\left(x+4\right)\left(x+5\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
x^{4}+11x^{3}+38x^{2}+40x-\left(x^{2}+2x+1\right)\left(x+4\right)\left(x+5\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{4}+11x^{3}+38x^{2}+40x-\left(x^{3}+6x^{2}+9x+4\right)\left(x+5\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Use the distributive property to multiply x^{2}+2x+1 by x+4 and combine like terms.
x^{4}+11x^{3}+38x^{2}+40x-\left(x^{4}+11x^{3}+39x^{2}+49x+20\right)=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Use the distributive property to multiply x^{3}+6x^{2}+9x+4 by x+5 and combine like terms.
x^{4}+11x^{3}+38x^{2}+40x-x^{4}-11x^{3}-39x^{2}-49x-20=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
To find the opposite of x^{4}+11x^{3}+39x^{2}+49x+20, find the opposite of each term.
11x^{3}+38x^{2}+40x-11x^{3}-39x^{2}-49x-20=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Combine x^{4} and -x^{4} to get 0.
38x^{2}+40x-39x^{2}-49x-20=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Combine 11x^{3} and -11x^{3} to get 0.
-x^{2}+40x-49x-20=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Combine 38x^{2} and -39x^{2} to get -x^{2}.
-x^{2}-9x-20=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+4\right)
Combine 40x and -49x to get -9x.
-x^{2}-9x-20=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)^{2}
Multiply x+4 and x+4 to get \left(x+4\right)^{2}.
-x^{2}-9x-20=\left(x^{2}+3x+2\right)\left(x+5\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)^{2}
Use the distributive property to multiply x+1 by x+2 and combine like terms.
-x^{2}-9x-20=\left(x^{3}+8x^{2}+17x+10\right)\left(x+3\right)-\left(x+1\right)\left(x+2\right)\left(x+4\right)^{2}
Use the distributive property to multiply x^{2}+3x+2 by x+5 and combine like terms.
-x^{2}-9x-20=x^{4}+11x^{3}+41x^{2}+61x+30-\left(x+1\right)\left(x+2\right)\left(x+4\right)^{2}
Use the distributive property to multiply x^{3}+8x^{2}+17x+10 by x+3 and combine like terms.
-x^{2}-9x-20=x^{4}+11x^{3}+41x^{2}+61x+30-\left(x+1\right)\left(x+2\right)\left(x^{2}+8x+16\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
-x^{2}-9x-20=x^{4}+11x^{3}+41x^{2}+61x+30-\left(x^{2}+3x+2\right)\left(x^{2}+8x+16\right)
Use the distributive property to multiply x+1 by x+2 and combine like terms.
-x^{2}-9x-20=x^{4}+11x^{3}+41x^{2}+61x+30-\left(x^{4}+11x^{3}+42x^{2}+64x+32\right)
Use the distributive property to multiply x^{2}+3x+2 by x^{2}+8x+16 and combine like terms.
-x^{2}-9x-20=x^{4}+11x^{3}+41x^{2}+61x+30-x^{4}-11x^{3}-42x^{2}-64x-32
To find the opposite of x^{4}+11x^{3}+42x^{2}+64x+32, find the opposite of each term.
-x^{2}-9x-20=11x^{3}+41x^{2}+61x+30-11x^{3}-42x^{2}-64x-32
Combine x^{4} and -x^{4} to get 0.
-x^{2}-9x-20=41x^{2}+61x+30-42x^{2}-64x-32
Combine 11x^{3} and -11x^{3} to get 0.
-x^{2}-9x-20=-x^{2}+61x+30-64x-32
Combine 41x^{2} and -42x^{2} to get -x^{2}.
-x^{2}-9x-20=-x^{2}-3x+30-32
Combine 61x and -64x to get -3x.
-x^{2}-9x-20=-x^{2}-3x-2
Subtract 32 from 30 to get -2.
-x^{2}-9x-20+x^{2}=-3x-2
Add x^{2} to both sides.
-9x-20=-3x-2
Combine -x^{2} and x^{2} to get 0.
-9x-20+3x=-2
Add 3x to both sides.
-6x-20=-2
Combine -9x and 3x to get -6x.
-6x=-2+20
Add 20 to both sides.
-6x=18
Add -2 and 20 to get 18.
x=\frac{18}{-6}
Divide both sides by -6.
x=-3
Divide 18 by -6 to get -3.