Solve for x
x=3
Graph
Share
Copied to clipboard
\left(4x-4\right)x-\left(-4-4x\right)\times 2x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-1\right)\left(x+1\right), the least common multiple of x+1,1-x,x^{2}-1,4.
4x^{2}-4x-\left(-4-4x\right)\times 2x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply 4x-4 by x.
4x^{2}-4x-\left(-8-8x\right)x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply -4-4x by 2.
4x^{2}-4x-\left(-8x-8x^{2}\right)=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply -8-8x by x.
4x^{2}-4x+8x+8x^{2}=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
To find the opposite of -8x-8x^{2}, find the opposite of each term.
4x^{2}+4x+8x^{2}=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Combine -4x and 8x to get 4x.
12x^{2}+4x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
12x^{2}+4x=4x^{2}+12+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply 4 by x^{2}+3.
12x^{2}+4x=4x^{2}+12+9\left(x-1\right)\left(x+1\right)
Multiply 4 and \frac{9}{4} to get 9.
12x^{2}+4x=4x^{2}+12+\left(9x-9\right)\left(x+1\right)
Use the distributive property to multiply 9 by x-1.
12x^{2}+4x=4x^{2}+12+9x^{2}-9
Use the distributive property to multiply 9x-9 by x+1 and combine like terms.
12x^{2}+4x=13x^{2}+12-9
Combine 4x^{2} and 9x^{2} to get 13x^{2}.
12x^{2}+4x=13x^{2}+3
Subtract 9 from 12 to get 3.
12x^{2}+4x-13x^{2}=3
Subtract 13x^{2} from both sides.
-x^{2}+4x=3
Combine 12x^{2} and -13x^{2} to get -x^{2}.
-x^{2}+4x-3=0
Subtract 3 from both sides.
a+b=4 ab=-\left(-3\right)=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=3 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-x^{2}+3x\right)+\left(x-3\right)
Rewrite -x^{2}+4x-3 as \left(-x^{2}+3x\right)+\left(x-3\right).
-x\left(x-3\right)+x-3
Factor out -x in -x^{2}+3x.
\left(x-3\right)\left(-x+1\right)
Factor out common term x-3 by using distributive property.
x=3 x=1
To find equation solutions, solve x-3=0 and -x+1=0.
x=3
Variable x cannot be equal to 1.
\left(4x-4\right)x-\left(-4-4x\right)\times 2x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-1\right)\left(x+1\right), the least common multiple of x+1,1-x,x^{2}-1,4.
4x^{2}-4x-\left(-4-4x\right)\times 2x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply 4x-4 by x.
4x^{2}-4x-\left(-8-8x\right)x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply -4-4x by 2.
4x^{2}-4x-\left(-8x-8x^{2}\right)=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply -8-8x by x.
4x^{2}-4x+8x+8x^{2}=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
To find the opposite of -8x-8x^{2}, find the opposite of each term.
4x^{2}+4x+8x^{2}=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Combine -4x and 8x to get 4x.
12x^{2}+4x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
12x^{2}+4x=4x^{2}+12+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply 4 by x^{2}+3.
12x^{2}+4x=4x^{2}+12+9\left(x-1\right)\left(x+1\right)
Multiply 4 and \frac{9}{4} to get 9.
12x^{2}+4x=4x^{2}+12+\left(9x-9\right)\left(x+1\right)
Use the distributive property to multiply 9 by x-1.
12x^{2}+4x=4x^{2}+12+9x^{2}-9
Use the distributive property to multiply 9x-9 by x+1 and combine like terms.
12x^{2}+4x=13x^{2}+12-9
Combine 4x^{2} and 9x^{2} to get 13x^{2}.
12x^{2}+4x=13x^{2}+3
Subtract 9 from 12 to get 3.
12x^{2}+4x-13x^{2}=3
Subtract 13x^{2} from both sides.
-x^{2}+4x=3
Combine 12x^{2} and -13x^{2} to get -x^{2}.
-x^{2}+4x-3=0
Subtract 3 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-4±\sqrt{4}}{2\left(-1\right)}
Add 16 to -12.
x=\frac{-4±2}{2\left(-1\right)}
Take the square root of 4.
x=\frac{-4±2}{-2}
Multiply 2 times -1.
x=-\frac{2}{-2}
Now solve the equation x=\frac{-4±2}{-2} when ± is plus. Add -4 to 2.
x=1
Divide -2 by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-4±2}{-2} when ± is minus. Subtract 2 from -4.
x=3
Divide -6 by -2.
x=1 x=3
The equation is now solved.
x=3
Variable x cannot be equal to 1.
\left(4x-4\right)x-\left(-4-4x\right)\times 2x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-1\right)\left(x+1\right), the least common multiple of x+1,1-x,x^{2}-1,4.
4x^{2}-4x-\left(-4-4x\right)\times 2x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply 4x-4 by x.
4x^{2}-4x-\left(-8-8x\right)x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply -4-4x by 2.
4x^{2}-4x-\left(-8x-8x^{2}\right)=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply -8-8x by x.
4x^{2}-4x+8x+8x^{2}=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
To find the opposite of -8x-8x^{2}, find the opposite of each term.
4x^{2}+4x+8x^{2}=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Combine -4x and 8x to get 4x.
12x^{2}+4x=4\left(x^{2}+3\right)+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Combine 4x^{2} and 8x^{2} to get 12x^{2}.
12x^{2}+4x=4x^{2}+12+4\left(x-1\right)\left(x+1\right)\times \frac{9}{4}
Use the distributive property to multiply 4 by x^{2}+3.
12x^{2}+4x=4x^{2}+12+9\left(x-1\right)\left(x+1\right)
Multiply 4 and \frac{9}{4} to get 9.
12x^{2}+4x=4x^{2}+12+\left(9x-9\right)\left(x+1\right)
Use the distributive property to multiply 9 by x-1.
12x^{2}+4x=4x^{2}+12+9x^{2}-9
Use the distributive property to multiply 9x-9 by x+1 and combine like terms.
12x^{2}+4x=13x^{2}+12-9
Combine 4x^{2} and 9x^{2} to get 13x^{2}.
12x^{2}+4x=13x^{2}+3
Subtract 9 from 12 to get 3.
12x^{2}+4x-13x^{2}=3
Subtract 13x^{2} from both sides.
-x^{2}+4x=3
Combine 12x^{2} and -13x^{2} to get -x^{2}.
\frac{-x^{2}+4x}{-1}=\frac{3}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=\frac{3}{-1}
Divide 4 by -1.
x^{2}-4x=-3
Divide 3 by -1.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.
x=3
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}