Solve for a
\left\{\begin{matrix}a=n+\frac{n}{x}\text{, }&x\neq -1\text{ and }n\neq 0\text{ and }x\neq 0\\a\neq 0\text{, }&n=0\text{ and }x=0\end{matrix}\right.
Solve for n
n=\frac{ax}{x+1}
x\neq -1\text{ and }a\neq 0
Graph
Share
Copied to clipboard
ax=\left(x+1\right)\times 1n
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a\left(x+1\right), the least common multiple of x+1,a.
ax=\left(x+1\right)n
Use the distributive property to multiply x+1 by 1.
ax=xn+n
Use the distributive property to multiply x+1 by n.
xa=nx+n
The equation is in standard form.
\frac{xa}{x}=\frac{nx+n}{x}
Divide both sides by x.
a=\frac{nx+n}{x}
Dividing by x undoes the multiplication by x.
a=n+\frac{n}{x}
Divide nx+n by x.
a=n+\frac{n}{x}\text{, }a\neq 0
Variable a cannot be equal to 0.
ax=\left(x+1\right)\times 1n
Multiply both sides of the equation by a\left(x+1\right), the least common multiple of x+1,a.
ax=\left(x+1\right)n
Use the distributive property to multiply x+1 by 1.
ax=xn+n
Use the distributive property to multiply x+1 by n.
xn+n=ax
Swap sides so that all variable terms are on the left hand side.
\left(x+1\right)n=ax
Combine all terms containing n.
\frac{\left(x+1\right)n}{x+1}=\frac{ax}{x+1}
Divide both sides by x+1.
n=\frac{ax}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}