\frac { x } { d y } = \sqrt { y }
Solve for d (complex solution)
d=y^{-\frac{3}{2}}x
y\neq 0\text{ and }x\neq 0
Solve for x (complex solution)
x=dy^{\frac{3}{2}}
d\neq 0\text{ and }y\neq 0
Solve for d
d=\frac{x}{y^{\frac{3}{2}}}
x\neq 0\text{ and }y>0
Solve for x
x=dy^{\frac{3}{2}}
d\neq 0\text{ and }y>0
Graph
Share
Copied to clipboard
x=dy\sqrt{y}
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dy.
dy\sqrt{y}=x
Swap sides so that all variable terms are on the left hand side.
\sqrt{y}yd=x
The equation is in standard form.
\frac{\sqrt{y}yd}{\sqrt{y}y}=\frac{x}{\sqrt{y}y}
Divide both sides by y\sqrt{y}.
d=\frac{x}{\sqrt{y}y}
Dividing by y\sqrt{y} undoes the multiplication by y\sqrt{y}.
d=y^{-\frac{3}{2}}x
Divide x by y\sqrt{y}.
d=y^{-\frac{3}{2}}x\text{, }d\neq 0
Variable d cannot be equal to 0.
\frac{1}{dy}x=\sqrt{y}
The equation is in standard form.
\frac{\frac{1}{dy}xdy}{1}=\frac{\sqrt{y}dy}{1}
Divide both sides by d^{-1}y^{-1}.
x=\frac{\sqrt{y}dy}{1}
Dividing by d^{-1}y^{-1} undoes the multiplication by d^{-1}y^{-1}.
x=dy^{\frac{3}{2}}
Divide \sqrt{y} by d^{-1}y^{-1}.
x=dy\sqrt{y}
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dy.
dy\sqrt{y}=x
Swap sides so that all variable terms are on the left hand side.
\sqrt{y}yd=x
The equation is in standard form.
\frac{\sqrt{y}yd}{\sqrt{y}y}=\frac{x}{\sqrt{y}y}
Divide both sides by y\sqrt{y}.
d=\frac{x}{\sqrt{y}y}
Dividing by y\sqrt{y} undoes the multiplication by y\sqrt{y}.
d=\frac{x}{y^{\frac{3}{2}}}
Divide x by y\sqrt{y}.
d=\frac{x}{y^{\frac{3}{2}}}\text{, }d\neq 0
Variable d cannot be equal to 0.
\frac{1}{dy}x=\sqrt{y}
The equation is in standard form.
\frac{\frac{1}{dy}xdy}{1}=\frac{\sqrt{y}dy}{1}
Divide both sides by d^{-1}y^{-1}.
x=\frac{\sqrt{y}dy}{1}
Dividing by d^{-1}y^{-1} undoes the multiplication by d^{-1}y^{-1}.
x=dy^{\frac{3}{2}}
Divide \sqrt{y} by d^{-1}y^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}