\frac { x } { d x } + 2 x y = 2 x
Solve for d
d=-\frac{1}{2x\left(y-1\right)}
y\neq 1\text{ and }x\neq 0
Solve for x
x=-\frac{1}{2d\left(y-1\right)}
y\neq 1\text{ and }d\neq 0
Graph
Share
Copied to clipboard
x+2xydx=2xdx
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dx.
x+2x^{2}yd=2xdx
Multiply x and x to get x^{2}.
x+2x^{2}yd=2x^{2}d
Multiply x and x to get x^{2}.
x+2x^{2}yd-2x^{2}d=0
Subtract 2x^{2}d from both sides.
2x^{2}yd-2x^{2}d=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\left(2x^{2}y-2x^{2}\right)d=-x
Combine all terms containing d.
\left(2yx^{2}-2x^{2}\right)d=-x
The equation is in standard form.
\frac{\left(2yx^{2}-2x^{2}\right)d}{2yx^{2}-2x^{2}}=-\frac{x}{2yx^{2}-2x^{2}}
Divide both sides by 2x^{2}y-2x^{2}.
d=-\frac{x}{2yx^{2}-2x^{2}}
Dividing by 2x^{2}y-2x^{2} undoes the multiplication by 2x^{2}y-2x^{2}.
d=-\frac{1}{2x\left(y-1\right)}
Divide -x by 2x^{2}y-2x^{2}.
d=-\frac{1}{2x\left(y-1\right)}\text{, }d\neq 0
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}