Solve for a
a=-\frac{bx}{b-x}
b\neq 0\text{ and }x\neq 0\text{ and }x\neq b
Solve for b
b=\frac{ax}{x+a}
a\neq 0\text{ and }x\neq 0\text{ and }x\neq -a
Graph
Share
Copied to clipboard
ax-bx=ab
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of b,a.
ax-bx-ab=0
Subtract ab from both sides.
ax-ab=bx
Add bx to both sides. Anything plus zero gives itself.
\left(x-b\right)a=bx
Combine all terms containing a.
\frac{\left(x-b\right)a}{x-b}=\frac{bx}{x-b}
Divide both sides by x-b.
a=\frac{bx}{x-b}
Dividing by x-b undoes the multiplication by x-b.
a=\frac{bx}{x-b}\text{, }a\neq 0
Variable a cannot be equal to 0.
ax-bx=ab
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of b,a.
ax-bx-ab=0
Subtract ab from both sides.
-bx-ab=-ax
Subtract ax from both sides. Anything subtracted from zero gives its negation.
\left(-x-a\right)b=-ax
Combine all terms containing b.
\frac{\left(-x-a\right)b}{-x-a}=-\frac{ax}{-x-a}
Divide both sides by -x-a.
b=-\frac{ax}{-x-a}
Dividing by -x-a undoes the multiplication by -x-a.
b=\frac{ax}{x+a}
Divide -ax by -x-a.
b=\frac{ax}{x+a}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}