Solve for a
\left\{\begin{matrix}a=-\frac{bx}{y-b}\text{, }&b\neq 0\text{ and }x\neq 0\text{ and }y\neq b\\a\neq 0\text{, }&b=y\text{ and }x=0\text{ and }y\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ay}{x-a}\text{, }&a\neq 0\text{ and }y\neq 0\text{ and }x\neq a\\b\neq 0\text{, }&a=x\text{ and }y=0\text{ and }x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
bx+ay=ab
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
bx+ay-ab=0
Subtract ab from both sides.
ay-ab=-bx
Subtract bx from both sides. Anything subtracted from zero gives its negation.
\left(y-b\right)a=-bx
Combine all terms containing a.
\frac{\left(y-b\right)a}{y-b}=-\frac{bx}{y-b}
Divide both sides by y-b.
a=-\frac{bx}{y-b}
Dividing by y-b undoes the multiplication by y-b.
a=-\frac{bx}{y-b}\text{, }a\neq 0
Variable a cannot be equal to 0.
bx+ay=ab
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
bx+ay-ab=0
Subtract ab from both sides.
bx-ab=-ay
Subtract ay from both sides. Anything subtracted from zero gives its negation.
\left(x-a\right)b=-ay
Combine all terms containing b.
\frac{\left(x-a\right)b}{x-a}=-\frac{ay}{x-a}
Divide both sides by x-a.
b=-\frac{ay}{x-a}
Dividing by x-a undoes the multiplication by x-a.
b=-\frac{ay}{x-a}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}