Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bcx}{cy+bz-bc}\text{, }&b\neq 0\text{ and }c\neq 0\text{ and }x\neq 0\text{ and }y\neq \frac{b\left(c-z\right)}{c}\\a\neq 0\text{, }&y=\frac{b\left(c-z\right)}{c}\text{ and }c\neq 0\text{ and }x=0\text{ and }b\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bcx}{cy+bz-bc}\text{, }&b\neq 0\text{ and }x\neq 0\text{ and }c\neq 0\text{ and }y\neq \frac{b\left(c-z\right)}{c}\\a\neq 0\text{, }&y=\frac{b\left(c-z\right)}{c}\text{ and }c\neq 0\text{ and }x=0\text{ and }b\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{acy}{cx+az-ac}\text{, }&a\neq 0\text{ and }c\neq 0\text{ and }y\neq 0\text{ and }x\neq \frac{a\left(c-z\right)}{c}\\b\neq 0\text{, }&x=\frac{a\left(c-z\right)}{c}\text{ and }c\neq 0\text{ and }y=0\text{ and }a\neq 0\end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
\frac { x } { a } + \frac { y } { b } + \frac { z } { c } = 1
Share
Copied to clipboard
bcx+acy+abz=abc
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
bcx+acy+abz-abc=0
Subtract abc from both sides.
acy+abz-abc=-bcx
Subtract bcx from both sides. Anything subtracted from zero gives its negation.
\left(cy+bz-bc\right)a=-bcx
Combine all terms containing a.
\frac{\left(cy+bz-bc\right)a}{cy+bz-bc}=-\frac{bcx}{cy+bz-bc}
Divide both sides by yc+zb-cb.
a=-\frac{bcx}{cy+bz-bc}
Dividing by yc+zb-cb undoes the multiplication by yc+zb-cb.
a=-\frac{bcx}{cy+bz-bc}\text{, }a\neq 0
Variable a cannot be equal to 0.
bcx+acy+abz=abc
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
bcx+acy+abz-abc=0
Subtract abc from both sides.
acy+abz-abc=-bcx
Subtract bcx from both sides. Anything subtracted from zero gives its negation.
\left(cy+bz-bc\right)a=-bcx
Combine all terms containing a.
\frac{\left(cy+bz-bc\right)a}{cy+bz-bc}=-\frac{bcx}{cy+bz-bc}
Divide both sides by yc+zb-cb.
a=-\frac{bcx}{cy+bz-bc}
Dividing by yc+zb-cb undoes the multiplication by yc+zb-cb.
a=-\frac{bcx}{cy+bz-bc}\text{, }a\neq 0
Variable a cannot be equal to 0.
bcx+acy+abz=abc
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
bcx+acy+abz-abc=0
Subtract abc from both sides.
bcx+abz-abc=-acy
Subtract acy from both sides. Anything subtracted from zero gives its negation.
\left(cx+az-ac\right)b=-acy
Combine all terms containing b.
\frac{\left(cx+az-ac\right)b}{cx+az-ac}=-\frac{acy}{cx+az-ac}
Divide both sides by cx+az-ca.
b=-\frac{acy}{cx+az-ac}
Dividing by cx+az-ca undoes the multiplication by cx+az-ca.
b=-\frac{acy}{cx+az-ac}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}