\frac { x } { a } + \frac { x } { b } = \frac { d x } { - 3 } + 3
Solve for a
a=-\frac{3bx}{bdx+3x-9b}
\left(b\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9b}{bd+3}\text{ and }x\neq 3b\right)\text{ or }\left(b\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9b}{bd+3}\text{ and }d\neq 0\right)\text{ or }\left(x\neq 0\text{ and }b=-\frac{3}{d}\text{ and }d\neq 0\right)
Solve for b
b=-\frac{3ax}{adx+3x-9a}
\left(a\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9a}{ad+3}\text{ and }x\neq 3a\right)\text{ or }\left(a\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9a}{ad+3}\text{ and }d\neq 0\right)\text{ or }\left(x\neq 0\text{ and }a=-\frac{3}{d}\text{ and }d\neq 0\right)
Graph
Share
Copied to clipboard
3bx+3ax=-abdx+3ab\times 3
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3ab, the least common multiple of a,b,-3.
3bx+3ax=-abdx+9ab
Multiply 3 and 3 to get 9.
3bx+3ax+abdx=9ab
Add abdx to both sides.
3bx+3ax+abdx-9ab=0
Subtract 9ab from both sides.
3ax+abdx-9ab=-3bx
Subtract 3bx from both sides. Anything subtracted from zero gives its negation.
\left(3x+bdx-9b\right)a=-3bx
Combine all terms containing a.
\left(bdx+3x-9b\right)a=-3bx
The equation is in standard form.
\frac{\left(bdx+3x-9b\right)a}{bdx+3x-9b}=-\frac{3bx}{bdx+3x-9b}
Divide both sides by 3x+bdx-9b.
a=-\frac{3bx}{bdx+3x-9b}
Dividing by 3x+bdx-9b undoes the multiplication by 3x+bdx-9b.
a=-\frac{3bx}{bdx+3x-9b}\text{, }a\neq 0
Variable a cannot be equal to 0.
3bx+3ax=-abdx+3ab\times 3
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3ab, the least common multiple of a,b,-3.
3bx+3ax=-abdx+9ab
Multiply 3 and 3 to get 9.
3bx+3ax+abdx=9ab
Add abdx to both sides.
3bx+3ax+abdx-9ab=0
Subtract 9ab from both sides.
3bx+abdx-9ab=-3ax
Subtract 3ax from both sides. Anything subtracted from zero gives its negation.
\left(3x+adx-9a\right)b=-3ax
Combine all terms containing b.
\left(adx+3x-9a\right)b=-3ax
The equation is in standard form.
\frac{\left(adx+3x-9a\right)b}{adx+3x-9a}=-\frac{3ax}{adx+3x-9a}
Divide both sides by 3x+adx-9a.
b=-\frac{3ax}{adx+3x-9a}
Dividing by 3x+adx-9a undoes the multiplication by 3x+adx-9a.
b=-\frac{3ax}{adx+3x-9a}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}