Solve for x (complex solution)
\left\{\begin{matrix}x=2a\text{, }&a\neq 0\\x\in \mathrm{C}\text{, }&a=\frac{1}{2}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=2a\text{, }&a\neq 0\\x\in \mathrm{R}\text{, }&a=\frac{1}{2}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=\frac{1}{2}=0.5\text{, }&\text{unconditionally}\\a=\frac{x}{2}\text{, }&x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
2x+\frac{1}{2}a\times 2a=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply both sides of the equation by 2a, the least common multiple of a,2.
2x+\frac{1}{2}a^{2}\times 2=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply \frac{1}{2} and 2 to get 1.
2x+a^{2}=2x\times 2a-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=4xa-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+2\left(1-a\right)\times 2a
Multiply -\frac{3}{2} and 2 to get -3.
2x+a^{2}=4xa-3a^{2}+4\left(1-a\right)a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+\left(4-4a\right)a
Use the distributive property to multiply 4 by 1-a.
2x+a^{2}=4xa-3a^{2}+4a-4a^{2}
Use the distributive property to multiply 4-4a by a.
2x+a^{2}=4xa-7a^{2}+4a
Combine -3a^{2} and -4a^{2} to get -7a^{2}.
2x+a^{2}-4xa=-7a^{2}+4a
Subtract 4xa from both sides.
2x-4xa=-7a^{2}+4a-a^{2}
Subtract a^{2} from both sides.
2x-4xa=-8a^{2}+4a
Combine -7a^{2} and -a^{2} to get -8a^{2}.
\left(2-4a\right)x=-8a^{2}+4a
Combine all terms containing x.
\left(2-4a\right)x=4a-8a^{2}
The equation is in standard form.
\frac{\left(2-4a\right)x}{2-4a}=\frac{4a\left(1-2a\right)}{2-4a}
Divide both sides by 2-4a.
x=\frac{4a\left(1-2a\right)}{2-4a}
Dividing by 2-4a undoes the multiplication by 2-4a.
x=2a
Divide 4a\left(1-2a\right) by 2-4a.
2x+\frac{1}{2}a\times 2a=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply both sides of the equation by 2a, the least common multiple of a,2.
2x+\frac{1}{2}a^{2}\times 2=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply \frac{1}{2} and 2 to get 1.
2x+a^{2}=2x\times 2a-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=4xa-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+2\left(1-a\right)\times 2a
Multiply -\frac{3}{2} and 2 to get -3.
2x+a^{2}=4xa-3a^{2}+4\left(1-a\right)a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+\left(4-4a\right)a
Use the distributive property to multiply 4 by 1-a.
2x+a^{2}=4xa-3a^{2}+4a-4a^{2}
Use the distributive property to multiply 4-4a by a.
2x+a^{2}=4xa-7a^{2}+4a
Combine -3a^{2} and -4a^{2} to get -7a^{2}.
2x+a^{2}-4xa=-7a^{2}+4a
Subtract 4xa from both sides.
2x-4xa=-7a^{2}+4a-a^{2}
Subtract a^{2} from both sides.
2x-4xa=-8a^{2}+4a
Combine -7a^{2} and -a^{2} to get -8a^{2}.
\left(2-4a\right)x=-8a^{2}+4a
Combine all terms containing x.
\left(2-4a\right)x=4a-8a^{2}
The equation is in standard form.
\frac{\left(2-4a\right)x}{2-4a}=\frac{4a\left(1-2a\right)}{2-4a}
Divide both sides by 2-4a.
x=\frac{4a\left(1-2a\right)}{2-4a}
Dividing by 2-4a undoes the multiplication by 2-4a.
x=2a
Divide 4a\left(1-2a\right) by 2-4a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}