Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+\frac{1}{2}a\times 2a=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply both sides of the equation by 2a, the least common multiple of a,2.
2x+\frac{1}{2}a^{2}\times 2=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply \frac{1}{2} and 2 to get 1.
2x+a^{2}=2x\times 2a-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=4xa-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+2\left(1-a\right)\times 2a
Multiply -\frac{3}{2} and 2 to get -3.
2x+a^{2}=4xa-3a^{2}+4\left(1-a\right)a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+\left(4-4a\right)a
Use the distributive property to multiply 4 by 1-a.
2x+a^{2}=4xa-3a^{2}+4a-4a^{2}
Use the distributive property to multiply 4-4a by a.
2x+a^{2}=4xa-7a^{2}+4a
Combine -3a^{2} and -4a^{2} to get -7a^{2}.
2x+a^{2}-4xa=-7a^{2}+4a
Subtract 4xa from both sides.
2x-4xa=-7a^{2}+4a-a^{2}
Subtract a^{2} from both sides.
2x-4xa=-8a^{2}+4a
Combine -7a^{2} and -a^{2} to get -8a^{2}.
\left(2-4a\right)x=-8a^{2}+4a
Combine all terms containing x.
\left(2-4a\right)x=4a-8a^{2}
The equation is in standard form.
\frac{\left(2-4a\right)x}{2-4a}=\frac{4a\left(1-2a\right)}{2-4a}
Divide both sides by 2-4a.
x=\frac{4a\left(1-2a\right)}{2-4a}
Dividing by 2-4a undoes the multiplication by 2-4a.
x=2a
Divide 4a\left(1-2a\right) by 2-4a.
2x+\frac{1}{2}a\times 2a=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply both sides of the equation by 2a, the least common multiple of a,2.
2x+\frac{1}{2}a^{2}\times 2=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=2x\times 2a-\frac{3}{2}a\times 2a+2\left(1-a\right)\times 2a
Multiply \frac{1}{2} and 2 to get 1.
2x+a^{2}=2x\times 2a-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply a and a to get a^{2}.
2x+a^{2}=4xa-\frac{3}{2}a^{2}\times 2+2\left(1-a\right)\times 2a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+2\left(1-a\right)\times 2a
Multiply -\frac{3}{2} and 2 to get -3.
2x+a^{2}=4xa-3a^{2}+4\left(1-a\right)a
Multiply 2 and 2 to get 4.
2x+a^{2}=4xa-3a^{2}+\left(4-4a\right)a
Use the distributive property to multiply 4 by 1-a.
2x+a^{2}=4xa-3a^{2}+4a-4a^{2}
Use the distributive property to multiply 4-4a by a.
2x+a^{2}=4xa-7a^{2}+4a
Combine -3a^{2} and -4a^{2} to get -7a^{2}.
2x+a^{2}-4xa=-7a^{2}+4a
Subtract 4xa from both sides.
2x-4xa=-7a^{2}+4a-a^{2}
Subtract a^{2} from both sides.
2x-4xa=-8a^{2}+4a
Combine -7a^{2} and -a^{2} to get -8a^{2}.
\left(2-4a\right)x=-8a^{2}+4a
Combine all terms containing x.
\left(2-4a\right)x=4a-8a^{2}
The equation is in standard form.
\frac{\left(2-4a\right)x}{2-4a}=\frac{4a\left(1-2a\right)}{2-4a}
Divide both sides by 2-4a.
x=\frac{4a\left(1-2a\right)}{2-4a}
Dividing by 2-4a undoes the multiplication by 2-4a.
x=2a
Divide 4a\left(1-2a\right) by 2-4a.