Solve for M
M=\frac{x}{26}
x\neq 0
Solve for x
x=26M
M\neq 0
Graph
Share
Copied to clipboard
x+M\left(-21\right)=5M
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by M.
x+M\left(-21\right)-5M=0
Subtract 5M from both sides.
x-26M=0
Combine M\left(-21\right) and -5M to get -26M.
-26M=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\frac{-26M}{-26}=-\frac{x}{-26}
Divide both sides by -26.
M=-\frac{x}{-26}
Dividing by -26 undoes the multiplication by -26.
M=\frac{x}{26}
Divide -x by -26.
M=\frac{x}{26}\text{, }M\neq 0
Variable M cannot be equal to 0.
x+M\left(-21\right)=5M
Multiply both sides of the equation by M.
x=5M-M\left(-21\right)
Subtract M\left(-21\right) from both sides.
x=26M
Combine 5M and -M\left(-21\right) to get 26M.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}